实验四有穷自动机的确定化

实验四有穷自动机的确定化

ID:42586048

大小:70.13 KB

页数:6页

时间:2019-09-18

实验四有穷自动机的确定化_第1页
实验四有穷自动机的确定化_第2页
实验四有穷自动机的确定化_第3页
实验四有穷自动机的确定化_第4页
实验四有穷自动机的确定化_第5页
资源描述:

《实验四有穷自动机的确定化》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、编译原理实验报告实验四:有穷状态自动机的确定化实验目的:1.熟练掌握DFA及NFA的定义及有关概念。2.理解并掌握确定的有穷自动机的化简等算法。实验要求:1.输入:非确定有限(穷)状态自动机。2.输出:确定化的有限(穷)状态自动实验原理:1.由定义可见,不确定有限自动机NFA与确定有限自动机DFA的主要区别是:(1)NFA的初始状态S为一个状态集,即允许有多个初始状态;(2)NFA中允许状态在某输出边上有相同的符号,即对同一个输入符号可以有多个后继状态。即DFA中的F是单值函数,而NFA中的F是多值函数。2.NFA确定化为DFA同一个字符串α可以由多条通路产生,而在实际

2、应用中,作为描述控制过程的自动机,通常都是确定有限自动机DFA,因此这就需要将不确定有限自动机转换成等价的确定有限自动机,这个过程称为不确定有限自动机的确定化,即NFA确定化为DFA。下面介绍一种NFA的确定化算法,这种算法称为子集法:(1)若NFA的全部初态为S1,S2,…,Sn,则令DFA的初态为:S=[S1,S2,…,Sn],其中方括号用来表示若干个状态构成的某一状态。(2)设DFA的状态集K中有一状态为[Si,Si+1,…,Sj],若对某符号a∈∑,在NFA中有F({Si,Si+1,…,Sj},a)={Si’,Si+1’,…,Sk’}则令F({Si,Si+1,…

3、,Sj},a)={Si’,Si+1’,…,Sk’}为DFA的一个转换函数。若[Si’,Si+1’,…,Sk‘]不在K中,则将其作为新的状态加入到K中。(3)重复第2步,直到K中不再有新的状态加入为止。(4)上面得到的所有状态构成DFA的状态集K,转换函数构成DFA的F,DFA的字母表仍然是NFA的字母表∑。(5)DFA中凡是含有NFA终态的状态都是DFA的终态。3.NFA确定化的实质是以原有状态集上的子集作为DFA上的一个状态,将原状态间的转换为该子集间的转换,从而把不确定有限自动机确定化。经过确定化后,状态数可能增加,而且可能出现一些等价状态,这时就需要简化。实验内容

4、:1.程序代码如下:#include#include#includeusingnamespacestd;#definemax100structedge{stringfirst;//边的初始结点stringchange;//边的条件stringlast;//边的终点};intN;//NFA的边数vectorvalue;//求状态集合I的&-闭包,用&代替“空“stringclosure(stringa,edge*b){inti,j;for(i=0;i

5、+){if(b[j].first[0]==a[i]&&b[j].change=="&"){a=a+b[j].last[0];}}}returna;}//状态集合I的a弧转换stringmove(stringjihe,charch,edge*b){inti,j;strings="";for(i=0;i

6、hartt;for(i=0;i

7、;i>b[i].first;if(b[i].first=="#")break;elsecin>>b[i].change>>b[i].last;}N=i;cout<<"请输入该NFA的初态及终态:"<>First>>Last;cout<<"请输入此NFA状态中的输入符号即边上的条件:"<>Change;T[x]=closure(First,b);T[x]=sort(T[x]);value.push_back(0);i=0;while(value[i]==0&&value.s

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。