欢迎来到天天文库
浏览记录
ID:42505070
大小:18.38 KB
页数:7页
时间:2019-09-16
《2019级下册数学相关知识点总结概括》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、五年级下册数学相关知识点总结概括 如果一个图形沿一条直线折叠,直线两侧的图形能够互相重合,这个图形就叫做轴对称图形,这时,我们也说这个图形关于这条直线(成轴)对称。 对称轴:折痕所在的这条直线叫做对称轴。 (1)可以通过对称轴的一边从而画出另一边; (2)可以通过画对称轴得出的两个图形全等。 6的因数有:1和6,2和3. 10的因数有:1和10,2和5. 15的因数有:1和15,3和5. 25的因数有:1和25,5. 关于奇数和偶数,有下面的性质: (1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数; (2)
2、奇数跟奇数和是偶数;偶数跟奇数的和是奇数;任意多个偶数的和都是偶数; (3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数; (4)除2外所有的正偶数均为合数; (5)相邻偶数最大公约数为2,最小公倍数为它们乘积的一半。 (6)奇数的积是奇数;偶数的积是偶数;奇数与偶数的积是偶数; (7)偶数的个位上一定是0、2、4、6、8;奇数的个位上是1、3、5、7、9. (1)长方体有6个面,每个面都是长方形,至少有两个相对的两个面完全相同。特殊情况时有两个面是正方形,其他四个面都是长方形,并且完全相同。 (3)长方体有12条棱
3、,相对的棱长度相等。可分为三组,每一组有4条棱。还可分为四组,每一组有3条棱。 (3)长方体有8个顶点。每个顶点连接三条棱。 (4)长方体相邻的两条棱互相(相互)垂直。 长方体的体积=长宽高 设一个长方体的长、宽、高分别为a、b、c,则它的体积V: V=abc=Sh 长方体的棱长之和=(长+宽+高)4 长方体棱长字母公式C=4(a+b+c) 相对的棱长长度相等 长方体棱长分为3组,每组4条棱。每一组的棱长度相等 (1)有6个面,每个面完全相同。 (2)有8个顶点。 (3)有12条棱,每条棱长度相等。 (4)相邻的两
4、条棱互相(相互)垂直。 因为6个面全部相等,所以正方体的表面积=一个面的面积6=棱长棱长6 设一个正方体的棱长为a,则它的表面积S: S=6aa或等于S=6a2 正方体的体积=棱长棱长棱长;设一个正方体的棱长为a,则它的体积为: V=aaa (1)求出原来几个分数的分母的最小公倍数 (2)根据分数的基本性质,把原来分数化成以这个最小公倍数为分母的分数 (1)同分母分数相加减,分母不变,即分数单位不变,分子相加减,最后要化成最简分数。 (2)异分母分数相加减,先通分,即运用分数的基本性质将异分母分数转化为同分母分数,改变其分
5、数单位而大小不变,再按同分母分数相加减法去计算,最后要化成最简分数。 (1)数域不同。约数只能是自然数,而因数可以是任何数。 (2)关系不同。约数是对两个自然数的整除关系而言,只要两个数是自然数,就能确定它们之间是否存在约数关系,如:405=8,40能被5整除,5就是40的约数,1210=,12不能被10整除,10不是12的约数。因数是两个或两个以上的数对它们的乘积关系而言的。如:82=16,8和2都是积16的因数,离开乘积算式就没有因数了。 (3)大小关系不同.当数a是数b的约数时,a不能大于b,当a是b的因数时,a可以大于b,也可
6、以小于b。 一般情况下,约数等于因数。 两个或多个非零自然数公有的因数叫做它们的公因数。 两个数共有的因数里最大的那一个叫做它们的最大公因数。(零除外) 其它:1是所有非零自然数的公因数。 两个成倍数关系的自然数之间,小的那一个数就是这两个数的最大公因数。 公元前6世纪的毕达哥拉斯是最早研究完全数的人,他已经知道6和28是完全数。毕达哥拉斯曾说:6象征着完满的婚姻以及健康和美丽,因为它的部分是完整的,并且其和等于自身。不过,或许印度人和希伯来人早就知道它们的存在了。有些《圣经》注释家认为6和28是上帝创造世界时所用的基本数字,他
7、们指出,创造世界花了六天,二十八天则是月亮绕地球一周的日数。圣奥古斯丁说:6这个数本身就是完全的,并不因为上帝造物用了六天;事实恰恰相反,因为这个数是一个完全数,所以上帝在六天之内把一切事物都造好了。 (1)它们都能写成连续自然数之和 例如: 6=1+2+3 28=1+2+3+4+5+6+7 496=1+2+3++30+31 (2)每个都是调和数 它们的全部因数的倒数之和都是2,因此每个完全数都是调和数。 (3)可以表示成连续奇立方数之和 除6以外的完全数,还可以表示成连续奇立方数之和。例如: 28=13+33 496
8、=13+33+53+73 8128=13+33+53++153 33550336=13+33+53++1253+1273 (4)都可以表达为2的一些连续正整数次幂之和 如
此文档下载收益归作者所有