欢迎来到天天文库
浏览记录
ID:42246413
大小:453.00 KB
页数:10页
时间:2019-09-10
《奥赛培训讲义 --- 第九部分---《磁场》》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、奥赛培训讲义《磁场》第九部分磁场第一讲基本知识介绍《磁场》部分在奥赛考刚中的考点很少,和高考要求的区别不是很大,只是在两处有深化:a、电流的磁场引进定量计算;b、对带电粒子在复合场中的运动进行了更深入的分析。一、磁场与安培力1、磁场a、永磁体、电流磁场→磁现象的电本质b、磁感强度、磁通量c、稳恒电流的磁场*毕奥-萨伐尔定律(Biot-Savartlaw):对于电流强度为I、长度为dI的导体元段,在距离为r的点激发的“元磁感应强度”为dB。矢量式d=k,(表示导体元段的方向沿电流的方向、为导体元段到考查点
2、的方向矢量);或用大小关系式dB=k结合安培定则寻求方向亦可。其中k=1.0×10−7N/A2。应用毕萨定律再结合矢量叠加原理,可以求解任何形状导线在任何位置激发的磁感强度。毕萨定律应用在“无限长”直导线的结论:B=2k;*毕萨定律应用在环形电流垂直中心轴线上的结论:B=2πkI;*毕萨定律应用在“无限长”螺线管内部的结论:B=2πknI。其中n为单位长度螺线管的匝数。2、安培力a、对直导体,矢量式为;或表达为大小关系式F=BILsinθ再结合“左手定则”解决方向问题(θ为B与L的夹角)。b、弯曲导体的
3、安培力⑴整体合力折线导体所受安培力的合力等于连接始末端连线导体(电流不变)的的安培力。证明:参照图9-1,令MN段导体的安培力F1与NO段导体的安培力F2的合力为F,则F的大小为10奥赛培训讲义《磁场》F==BI=BI关于F的方向,由于ΔFF2P∽ΔMNO,可以证明图9-1中的两个灰色三角形相似,这也就证明了F是垂直MO的,再由于ΔPMO是等腰三角形(这个证明很容易),故F在MO上的垂足就是MO的中点了。证毕。由于连续弯曲的导体可以看成是无穷多元段直线导体的折合,所以,关于折线导体整体合力的结论也适用于
4、弯曲导体。(说明:这个结论只适用于匀强磁场。)⑵导体的内张力弯曲导体在平衡或加速的情形下,均会出现内张力,具体分析时,可将导体在被考查点切断,再将被切断的某一部分隔离,列平衡方程或动力学方程求解。c、匀强磁场对线圈的转矩如图9-2所示,当一个矩形线圈(线圈面积为S、通以恒定电流I)放入匀强磁场中,且磁场B的方向平行线圈平面时,线圈受安培力将转动(并自动选择垂直B的中心轴OO′,因为质心无加速度),此瞬时的力矩为M=BIS几种情形的讨论——⑴增加匝数至N,则M=NBIS;⑵转轴平移,结论不变(证明从略);
5、⑶线圈形状改变,结论不变(证明从略);*⑷磁场平行线圈平面相对原磁场方向旋转α角,则M=BIScosα,如图9-3;证明:当α=90°时,显然M=0,而磁场是可以分解的,只有垂直转轴的的分量Bcosα才能产生力矩…⑸磁场B垂直OO′轴相对线圈平面旋转β角,则M=BIScosβ,如图9-4。证明:当β=90°时,显然M=0,而磁场是可以分解的,只有平行线圈平面的的分量Bcosβ才能产生力矩…说明:在默认的情况下,讨论线圈的转矩时,认为线圈的转轴垂直磁场。如果没有人为设定,而是让安培力自行选定转轴,这时的力
6、矩称为力偶矩。10奥赛培训讲义《磁场》二、洛仑兹力1、概念与规律a、,或展开为f=qvBsinθ再结合左、右手定则确定方向(其中θ为与的夹角)。安培力是大量带电粒子所受洛仑兹力的宏观体现。b、能量性质由于总垂直与确定的平面,故总垂直,只能起到改变速度方向的作用。结论:洛仑兹力可对带电粒子形成冲量,却不可能做功。或:洛仑兹力可使带电粒子的动量发生改变却不能使其动能发生改变。问题:安培力可以做功,为什么洛仑兹力不能做功?解说:应该注意“安培力是大量带电粒子所受洛仑兹力的宏观体现”这句话的确切含义——“宏观体
7、现”和“完全相等”是有区别的。我们可以分两种情形看这个问题:(1)导体静止时,所有粒子的洛仑兹力的合力等于安培力(这个证明从略);(2)导体运动时,粒子参与的是沿导体棒的运动v1和导体运动v2的合运动,其合速度为v,这时的洛仑兹力f垂直v而安培力垂直导体棒,它们是不可能相等的,只能说安培力是洛仑兹力的分力f1=qv1B的合力(见图9-5)。很显然,f1的合力(安培力)做正功,而f不做功(或者说f1的正功和f2的负功的代数和为零)。(事实上,由于电子定向移动速率v1在10−5m/s数量级,而v2一般都在1
8、0−2m/s数量级以上,致使f1只是f的一个极小分量。)☆如果从能量的角度看这个问题,当导体棒放在光滑的导轨上时(参看图9-6),导体棒必获得动能,这个动能是怎么转化来的呢?若先将导体棒卡住,回路中形成稳恒的电流,电流的功转化为回路的焦耳热。而将导体棒释放后,导体棒受安培力加速,将形成感应电动势(反电动势)。动力学分析可知,导体棒的最后稳定状态是匀速运动(感应电动势等于电源电动势,回路电流为零)。由于达到稳定速度前的回路电流是逐渐减小的,故
此文档下载收益归作者所有