欢迎来到天天文库
浏览记录
ID:42176337
大小:1.49 MB
页数:131页
时间:2019-09-09
《第七章 陶瓷基复合材料》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第七章陶瓷基复合材料7.1陶瓷基复合材料的种类及基本性能7.2陶瓷基复合材料的成型加工技术7.3陶瓷基复合材料的应用17.1陶瓷基复合材料的种类及基本性能现代陶瓷材料具有耐高温、耐磨损、耐腐蚀及重量轻等许多优良的性能。但是,陶瓷材料同时也具有致命的缺点,即脆性,这一弱点正是目前淘瓷材料的使用受到很大限制的主要原因。2因此,陶瓷材料的韧性化问题便成了近年来陶瓷工作者们研究的一个重点问题。现在这方面的研究巳取得了初步进展,探索出了若干种韧化陶瓷的途径。3其中,往陶陶瓷材料中加入起增韧作用的第二相而制成陶瓷基复合材料即是一种重要方法。47.
2、1.1陶瓷基复合材料的基体与增强体(1).陶瓷基复合材料的基体陶瓷基复合材料的基体为陶瓷,这是一种包括范围很广的材料,属于无机化合物而不是单质,所以它的结构远比金属合金复杂得多。5现代陶瓷材料的研究,最早是从对硅酸盐材料的研究开始的,随后又逐步扩大到了其他的无机非金属材料。目前被人们研究最多的是碳化硅、氮化硅、氧化铝等,它们普遍具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。6(2).陶瓷复合材料的增强体陶瓷基复合材料中的增强体,通常也称为增韧体。从几何尺寸上增强体可分为纤维(长、短纤维)、晶须和颗粒三类。77.1.2纤维增强陶瓷基
3、复合材料在陶瓷材料中,加入第二相纤维制成复合材料是改善陶瓷材料韧性的重要手段,按纤维排布方式的不同,又可将其分为单向排布长纤维复合材料和多向排布纤维复合材料。8(1)、单向排布长纤维复合材料单向排布纤维增韧陶瓷基复合材料的显著特点是它具有各向异性,即沿纤维长度方向上的纵向性能要大大高于其横向性能。在实际构件中,主要是使用其纵向性能。9在单向排布纤维增韧陶瓷基复合材料中,当裂纹扩展遇到纤维时会受阻,这时,如果要使裂纹进一步扩展就必须提高外加应力。这一过程的示意图如下:10裂纹垂直于纤维方向扩展示意图11当外加应力进一步提高时,由于基体与
4、纤维间的界面离解,同时又由于纤维的强度高于基体的强度,从而使纤维从基体中拔出。当拔出的长度达到某一临界值时,会使纤维发生断裂。12因此,裂纹的扩展必须克服由于纤维的加入而产生的拔出功和纤维断裂功,这样,使得材料的断裂更为困难,从而起到了增韧的作用。13实际材料断裂过程中,纤维的断裂并非发生在同一裂纹平面,这样主裂纹还将沿纤维断裂位置的不同而发生裂纹转向。这也同样会使裂纹的扩展阻力增加,从而使韧性进一步提高。14(2).多向排布纤维增韧复合材料单向排布纤维增韧陶瓷只是在纤维排列方向上的纵向性能较为优越,而其横向性能显著低于纵向性能,所以
5、只适用于单轴应力的场合。15而许多陶瓷构件则要求在二维及三维方向上均具有优良的性能,这就要进一步研究多向排布纤维增韧陶瓷基复合材料。16(1)二维多向排布纤维增韧复合材料这种复合材料中,纤维的排布方式有两种。一种是将纤维编织成纤维布,浸渍浆料后,根据需要的厚度将单层或若干层进行热压烧结成型,如下图所示:17纤维层基体纤维布层压复合材料示意图18这种材料在纤维排布平面的二维方向上性能优越,而在垂直于纤维排布面方向上的性能较差。一般应用在对二维方向上有较高性能要求的构件上。19另一种是纤维分层单向排布,层间纤维成一定角度,如下图所示。20
6、纤维层基体多层纤维按不同角度方向层压示意图21后一种复合材料可以根据构件的形状用纤维浸浆缠绕的方法做成所需要形状的壳层状构件。而前一种材料成型板状构件曲率不宜太大。22这种二维多向纤维增韧陶瓷基复合材料的韧化机理与单向排布纤维复合材料是一样的,主要也是靠纤维的拔出与裂纹转向机制,使其韧性及强度比基体材料大幅度提高。23(3)三维多向排布纤维增韧陶瓷基复合材料三维多向编织纤维增韧陶瓷是为了满足某些情况的性能要求而设计的。这种材料最初是从宇航用三向C/C复合材料开始的,现已发展到三向石英/石英等陶瓷复合材料。24下图为三向正交C/C纤维编
7、织结构示意图。它是按直角坐标将多束纤维分层交替编织而成。25XYZ三向C/C编织结构示意图由于每束纤维呈直线伸展,不存在相互交缠和绕曲,因而使纤维可以充分发挥最大的结构强度。26这种三维多向编织结构还可以通过调节纤维束的根数和股数,相邻束间的间距,织物的体积密度以及纤维的总体积分数等参数进行设计以满足性能要求。277.1.3晶须和颗粒增强陶瓷基复合材料长纤维增韧陶瓷基复合材料虽然性能优越,但它的制备工艺复杂,而且纤维在基体中不易分布均匀。因此,近年来又发展了短纤维、晶须及颗粒增韧陶瓷基复合材料。28由于晶须的尺寸很小,从客观上看与粉末
8、一样,因此在制备复合材料时,只需将晶须分散后与基体粉末混合均匀,然后对混好的粉末进行热压烧结,即可制得致密的晶须增韧陶瓷基复合材料。29目前常用的是SiC,Si3N4,Al2O3晶须,常用的基体则为Al2O3,ZrO2,
此文档下载收益归作者所有