欢迎来到天天文库
浏览记录
ID:42116384
大小:41.00 KB
页数:4页
时间:2019-09-08
《直线与圆的位置关系教学设计资料》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《直线与圆的位置关系》高效课堂案例单自军一、教材主要内容及地位 《直线和圆的位置关系》是北师大版义务教育课程标准实验教材九年级下第三章第4节。这节课探索了直线和圆的三种位置关系,又探索了圆的切线性质.本节课内容是点和圆的位置关系的深化与延伸,直线和圆的位置关系的运动和变化把圆与直线有机结合在一起,直线和圆的三种位置关系是研究直线与圆有关性质的基础二、教学目标知识与技能:经历探索直线与圆的位置关系的过程,理解直线与圆有相交、相切、相离的三种位置关系.过程与方法:探索圆心到直线的距离与半径之间的数量关系
2、和直线与圆的位置关系之间的内在联系,同时发展交流合作、归纳概括能力。情感与态度:认识数学与人类生活的密切联系,体会数学的趣味性。三、教学重点直线与圆的三种位置关系——相交、相切、相离从设置情景提出问题,到动手操作、交流,直至归纳得出结论,整个过程学生不仅得到了直线与圆的位置关系,更重要的是经历了知识过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学、应用数学。四、教学难点探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。五、教具准备:圆规、直尺六
3、、教法与学法 1.教师通过组织学生自主观察分析,引导学生归纳,概括. 2.在教师的组织下,以学生为主体,探索性教学.七、教学过程教学步骤教师活动学生活动教学方式课前测评点与圆有哪几种位置关系?设⊙O的半径为r,点P到圆心的距离为d,如何用d与r之间的数量关系表示点P与⊙O的位置关系?在教师引导下回忆前面知识,为探究新知识作好准备。由学生归纳总结创设情景欣赏《海上日出》图片,感受生活中反映直线与圆的位置关系的现象。议一议:学生分小组进行讨论,可从直线与圆交点的个数考虑,1个交点,2个交点,没有交点…
4、…。学生分组讨论,师生互动合作探索活动对学生分类中出现的问题予以纠正,对学生提出解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。按照公共点的个数,进行分类(分三类):活动一操作、思考第一层次:动手操作,并在操作中感受直线与圆的位置关系的变化。(1)直线与圆的公共点的个数有变化。(2)圆心到直线的距离有变化。第二层次:通过操作活动引导学生归纳直线与圆的三种位置关系。活动二经过对各种情况的分析、归纳、总结,对学生渗透分类讨论的数学思想。直线与圆有两个公共点时叫做直线与圆相交
5、;直线与圆有唯一公共点时叫做直线与圆相切,这条直线叫做圆的切线,这个公共点叫做切点;直线与圆没有公共点时叫做直线与圆相离。根据学生讨论的结果,教师板书,如果⊙O的半径为r,圆心O到直线的距离为d,那么:直线l与相交⊙O<==>dd=r直线l与相离⊙O<==>d>r探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。第一层次:观察垂足与⊙O的三种位置关系,使学生体会到:这三种位置关系分别同直线与圆的三种位置关系对应。第二层次:探索圆心到直线的距离与半径
6、之间的数量关系和直线与圆的位置关系之间的内在联系。例题教学例在△ABC中,∠A=45°,AC=4,以C为圆心,r为半径的圆与直线AB有怎样的位置关系?为什么?(1)r=,(2)r=2,(3)r=3关于直线与圆的位置关系,不仅要理解它的判定方法,还应掌握如何运用该判定方法判断直线与圆有怎样的位置关系。引导学生对问题进行分析:要判定直线AB与⊙C的位置关系,就要比较圆心C到直线AB的距离,与⊙C的半径的大小,因此,要作出点C到直线AB的垂线段CD,由CD与⊙C半径之间的数量关系,并可以判定,直线AB与⊙C
7、的位置关系检测学生对知识掌握情况及应用能力。再次渗透分类的数学思想,体会分析的方法,积累数学活动的经验。巩固运用由上面的结论可知:判定直线和圆的位置关系,可转化为求圆心与该直线的距离和半径的大小来判定。鼓励学生自己举出实例,体验数学在生活中的应用。达标小结教师带领,回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律。学生在教师引导下回顾反思,归纳整理。八、案例分析1.关于直线与圆相切的定义,必须强调“有唯一公共点”,并使学生体会到:只有当直线与圆有相切关系时,才把直线叫做圆
8、的切线,并把它们的公共点叫做切点,避免在说明直线与圆相切时,首先承认“切点”的错误。2.在研究利用圆心到直线的距离d与半径r之间的数量关系判定直线与圆的位置关系时,应注意启发、引导类比“点与圆的位置关系”,进而将直线位置关系转化为点(圆心到直线的垂线段的垂足)与圆的位置关系。3.对直线与圆的位置关系,要使学生体会到:直线与圆的位置关系转化为点到直线的距离与半径之间的数量关系;反过来,也可能通过点到直线的距离与半径之间的数量关系判定直线与圆的位置关系。由形
此文档下载收益归作者所有