资源描述:
《湖南工业大学课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二节随机事件的概率(二)1.定义一、等可能概型(古典概型)设试验E的样本空间由n个样本点构成,A为E的任意一个事件,且包含m个样本点,则事件A出现的概率记为:2.古典概型中事件概率的计算公式称此为概率的古典定义.3.古典概型的基本模型:摸球模型(1)无放回地摸球问题1设袋中有4只白球和2只黑球,现从袋中无放回地依次摸出2只球,求这2只球都是白球的概率.解基本事件总数为A所包含基本事件的个数为(2)有放回地摸球问题2设袋中有4只红球和6只黑球,现从袋中有放回地摸球3次,求前2次摸到黑球、第3次摸到红球的概率.解第1次摸球10种第2次摸球10种第3次摸球10种6种第1次摸到黑球6种第2次摸到黑
2、球4种第3次摸到红球基本事件总数为A所包含基本事件的个数为课堂练习1o电话号码问题在7位数的电话号码中,第一位不能为0,求数字0出现3次的概率.2o骰子问题掷3颗均匀骰子,求点数之和为4的概率.4.古典概型的基本模型:球放入杯子模型(1)杯子容量无限问题1把4个球放到3个杯子中去,求第1、2个杯子中各有两个球的概率,其中假设每个杯子可放任意多个球.4个球放到3个杯子的所有放法因此第1、2个杯子中各有两个球的概率为(2)每个杯子只能放一个球问题2把4个球放到10个杯子中去,每个杯子只能放一个球,求第1至第4个杯子各放一个球的概率.解第1至第4个杯子各放一个球的概率为2o生日问题某班有20个学生
3、都是同一年出生的,求有10个学生生日是1月1日,另外10个学生生日是12月31日的概率.课堂练习1o分房问题将张三、李四、王五3人等可能地分配到3间房中去,试求每个房间恰有1人的概率.解二、典型例题在N件产品中抽取n件,其中恰有k件次品的取法共有于是所求的概率为解在N件产品中抽取n件的所有可能取法共有例3在1~2000的整数中随机地取一个数,问取到的整数既不能被6整除,又不能被8整除的概率是多少?设A为事件“取到的数能被6整除”,B为事件“取到的数能被8整除”,则所求概率为解于是所求概率为例4将15名新生随机地平均分配到三个班级中去,这15名新生中有3名是优秀生.问(1)每一个班级各分配到一
4、名优秀生的概率是多少?(2)3名优秀生分配在同一个班级的概率是多少?解15名新生平均分配到三个班级中的分法总数:(1)每一个班级各分配到一名优秀生的分法共有因此所求概率为(2)将3名优秀生分配在同一个班级的分法共有3种,对于每一种分法,其余12名新生的分法有因此3名优秀生分配在同一个班级的分法共有因此所求概率为例5某接待站在某一周曾接待过12次来访,已知所有这12次接待都是在周二和周四进行的,问是否可以推断接待时间是有规定的.假设接待站的接待时间没有规定,且各来访者在一周的任一天中去接待站是等可能的.解周一周二周三周四周五周六周日12341277777故一周内接待12次来访共有小概率事件在实
5、际中几乎是不可能发生的,从而可知接待时间是有规定的.周一周二周三周四周五周六周日周二周四1234122222212次接待都是在周二和周四进行的共有故12次接待都是在周二和周四进行的概率为例6假设每人的生日在一年365天中的任一天是等可能的,即都等于1/365,求64个人中至少有2人生日相同的概率.64个人生日各不相同的概率为故64个人中至少有2人生日相同的概率为解说明我们利用软件包进行数值计算.定义当随机试验的样本空间是某个区域,并且任意一点落在度量(长度、面积、体积)相同的子区域是等可能的,则事件A的概率可定义为说明当古典概型的试验结果为连续无穷多个时,就归结为几何概型.三、几何概型那么两
6、人会面的充要条件为例7甲、乙两人相约在0到T这段时间内,在预定地点会面.先到的人等候另一个人,经过时间t(t7、乘的概率为设x,y分别为甲、乙两人到达的时刻,则有解最多等一辆车,甲、乙同乘一车的概率为蒲丰投针试验例91777年,法国科学家蒲丰(Buffon)提出了投针试验问题.平面上画有等距离为a(a>0)的一些平行直线,现向此平面任意投掷一根长为b(b