欢迎来到天天文库
浏览记录
ID:42052321
大小:66.00 KB
页数:13页
时间:2019-09-07
《谈高三数学学习方法》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、谈高三数学学习方法作者:佚名来源:北京人大附中网校呼市分校时间:2006-1-619:01:10同学们,进入高三就意味着高考的来临,为实现升学的美好理想,高三一年的学习质量是关健,因此不仅要有信心和毅力,更要有科学有效的学习方法,它就象杠杆一样,能起到事半功倍的效果.一、用好课本•有的同学说:“课本有什么好看的?还不就是几个定义、定理、公式?”孰不知,就是那么几个定义、定理、公式,却以英深刻严谨的思想内涵,筑起了一幢幢数学大厦,而对数学学习感到困难者,通病之一就是对它缺乏透彻而全面的理解和掌握.所以,全面、深刻地理解和掌握定义、定理、公式是搞好复习,提高成绩的一项重要任
2、务•要用好课本应侧重以下几个方面.1•对数学概念重新认识,深刻理解其内涵与外延,区分容易混淆的概念•如以“角”的概念为例,课本屮出现了不少种“角”,如直线的斜角,两条异面直线所成的角,直线与平面所成的角,复数的辐角主值,夹角、倒角等,它们从各口的定义出法,都有一个确定的取值范围•如两条异面直线所成的角是锐角或宜角,而不是钝角,这样保证了它的唯一性.对此理解、掌握了才不会出现概念性错误.2•尽一步加深对定理、公式的理解与掌握,注意每个定理、公式的运用条件和范围•如用平均值不等式求最值,必须满三个条件,缺一不可•有的同学Z所以出错误,不是对平均值不等式的结构不熟悉,就是忽视
3、其应满足的条件•乂如棣莫佛定理是对复数三角形式來说的•如数列中的前n项和与无穷数列各项和S(S=)含义是不同的,等等.3.掌握典型命题所体现的思想与方法•如对等式的证明方法,就给大家提供了求二项式展开式或多项式展开式系数和的普遍方法.如已矢U(l~2x)=a+ax+ax+•・・+ax,那么①a+a+a+…+a=;(2)a+
4、a
5、+
6、a
7、+•••+
8、a
9、二.如(x+1)(x+1)(x+1)・・・(x+1)的展开式所有项的系数之和为.因此,端正思想,认真看书,全面掌握,并结合其它资料和练习,加深对基础知识的理解,从而为提高解题能力打下坚实的基础.二、上好课•同学们学习的主阵
10、地是课堂,课堂的学习质量是影响学习成绩的关一环.1・会听课•有的同学会说:“谁还不会听课?”其实不然•会听课就是要积极思考•当老师提出问题后,就要抢在老师前面思考怎么办?想一想解决这个问题的所有可能的途径和方法,然后在和教师讲的去比较,可能有的想法行有的不行,可能老师的方法更好,可能你的方法还简明、还奇妙•而不要等老师一点一点告诉你,自己仅仅是听懂了就认为学会了,这实际上是只得怀疑的•难怪不少同学说老师一讲就会,自C一做就错,原因是自C没有真正去思考,也就不可能变成自己的东西•所以积极思考是上好课最为重要的环节,当然也学习的主要方法.2.做笔记.上课老师讲的含有重要概念
11、,各种问题常规思想与方法,易错的问题,以及一些很适用的规律和技能等,所以,上课做好笔记是必要的.3.要及时复习.根据记忆规律,复习应及时,每天一复习,一周一复习,每单一总结为好.三•多做题•学数学离不开做题,高三学习更要做题,不做一定量习题是不叮能学好数学的,但是要注意以下几个问题:1.难度适当•现在复习资料多,题多,复习时应按老师的要求•且不能一味做难题、综合题,好高鹫远,不但会耗费大量时间,而且遇到不会做题多了就会降低你的口信心,养成容易忽略一些看似简单的基础问题和细节问题,在考试时丢了不丢的分,造成难以弥补的损失•因此,练习时应从自已的实际情况出发,循序渐进.应以
12、基础题、中档题为主,适当做一些综合性较强的题以提高能力和思维品质2.题贵在精•在可能的情况下多练习一些是好的,但贵在精•首先选题应结合《考试说明》的要求和近儿年高考题的考查的方向去选,重点休现“三基”,体现“通性、通法”•其次做题吋的思考和总结非常重要,每做一道题都要回想一下自己的解题思路,看看能不能一题多解,举一反三,并注意合理运算,优化解题过程.第三对重点问题要舍得划费时间,多做一些题•第四在复习过程中也要不断做一些应用题,来捉高阅读理解能力和解决实际问题的能力,这是高考改革的方向Z3.重视改错•有的同学只重视解题的数量而轻视质量,农现在做题后不问对错,尤其老师己经
13、批阅过的也视而不见,这怎么能进步呢?错了不仅要改,还要记下来,分析造成错谋的原因和启示,尤其是考试试卷更要注意•只有经过不断的改正错误,FI积月累,才能提高.4•注意总结•不仅包括题型、方法、规律的总结,还要掌握一些基本题•如立休儿何中有这样一道:AC和平面所成的角是,AC平面内AC和AB的射影AB成角,设ZBAC=,求证:coscos二cos•这个等式为立体几何中某此题的计算带来了方便.如对函数f(x)二x+的奇偶性、单调性、极值和图彖应熟悉,利用它给求某些解析式的最值带来了方便.四.搞好每一阶段的复习•进入高三后基本上就开始复习了,耍
此文档下载收益归作者所有