欢迎来到天天文库
浏览记录
ID:41996224
大小:5.36 MB
页数:39页
时间:2019-09-06
《正式稿《等比数列前n项和》说课》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、长沙市第六中学等比数列的前n项和(第一课时)等比数列的前n项和(第一课时)长沙市六中钟辅君指导老师易觉平等比数列的前n项和等比数列的前n项和一、教材分析二、目标分析三、过程分析四、教法分析五、评价分析一、教材分析一、教材分析1.从在教材中的地位与作用来看《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.一、教材分析一、教材分析2.从学生的认知角度来看学生很容易把本节内容与等差数列前n项和从
2、公式的形成、特点等方面进行类比,这是认知的有利因素.认知的不利因素有:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维定势是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错.一、教材分析一、教材分析3.学情分析教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨.一、教材分析一、教材分析4.重点、难点分析本节课的重点是公式的推导、公式的特点和公式的运用;难点是公式的推导方法及公式应用中q与1的关系.
3、这样确定重点,既能夯实“双基”,又凸现了掌握知识的三个层次:识记、理解和运用.而公式推导用到了多种重要的数学思想方法,所以既是重点又是难点.二、目标分析二、目标分析1.知识与技能目标理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题.分析:这一目标体现了基础知识的落实、基本技能的形成,这是数学教学的首要环节,也正符合课程标准的要求.二、目标分析二、目标分析2.过程与方法目标通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.分析:因为数
4、学教学的最终目的是通过思想方法的渗透以及思维品质的锻炼,从而让学生在能力上得到发展.二、目标分析二、目标分析3.情感、态度与价值观通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点.三、过程分析三、过程分析创设情境,提出问题师生互动,探究问题类比联想,解决问题讨论交流,延伸拓展变式训练,深化认识例题讲解,形成技能总结归纳,加深理解课后作业,分层练习故事结束,首尾呼应1.创设情境,提出问题引入:印度国际象棋发明者的故事(西萨)设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主
5、题与重点.设问:同学们,你们知道西萨要的是多少小麦吗?引导学生写出麦粒总数为在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍.同时,形成繁难的情境激起了学生的求知欲,引导学生急于寻求解决问题的新方法,为后面的教学埋下伏笔.设计意图:2.师生互动,探究问题探讨:发明者要求的麦粒总数是:S64=1+2+22+···+263①上
6、式有何特点?如果①式两边同乘以2得2S64=2+22+23+···+263+264②比较①、②两式,有什么关系?留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩证思维能力的良好契机.设计意图:S64=1+2+22+23+···+263①2S64=2+22+23+···+263+264②错位相减法反思:纵观全过程,①式两边为什么要乘以2?两式上下相对的项完全相同,把两式相减,就可以消去相同的项,得到.学生经过繁难的计算之苦后,突然发现上述解
7、法,会惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心.设计意图:3.类比联想,解决问题问题:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的成功和愉快.设计意图:探讨1:探讨2:结合等比数列的通项公式,如何把用表示出来?(引导学生得出公式的另一形式)对不对?=1时=?(这里引导学生对进行分类讨论,得出公式,同时为后面的例题教学打下基础.)设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识
此文档下载收益归作者所有