高二数学期末试卷附有答案

高二数学期末试卷附有答案

ID:41932991

大小:596.00 KB

页数:5页

时间:2019-09-04

高二数学期末试卷附有答案_第1页
高二数学期末试卷附有答案_第2页
高二数学期末试卷附有答案_第3页
高二数学期末试卷附有答案_第4页
高二数学期末试卷附有答案_第5页
资源描述:

《高二数学期末试卷附有答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高二上学期期末考试数学试卷总分:150分时间:120分钟第I卷一.选择题:(本题共12小题,每小题5分,共60分)1.若,则下列不等式能成立的是()(A)(B)(C)(D)2.若等差数列的前项和且,则等于(  )(A)3(B)4(C)(D)3在△ABC中,若,则()(A)(B)(C)(D)4.若命题的逆命题是,命题的逆否命题是,则与的关系是()(A)互为逆否命题(B)互为逆命题(C)互为否命题(D)不能确定5.到两坐标轴的距离之和为6的点的轨迹方程是()(A)(B)(C)(D)6.双曲线的焦距为()(A)16(B)8(C)4(D)不确定,与值有关7.若抛物线的顶点在原点,焦点是双

2、曲线的顶点,则抛物线的方程是()(A)(B)(C)(D)8.若不等式,则的取值范围是()(A)(B)(C)(D)9.已知双曲线,若椭圆N以M的焦点为顶点,以M的顶点为焦点,则椭圆N的准线方程是()(A)(B)(C)(D)10.满足不等式的点(x,y)所在的区域应为()11.各项均为正数的等比数列的前n项和为Sn,若S10=2,S30=14,则S40等于()(A)80   (B)30(C)26(D)1612.一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于点P,直线PF(F为椭圆的左焦点)是该圆的切线,则椭圆的离心率为(  )(A)(B)   (C)(D)二.填空题(本题共4

3、小题,每小题4分,共16分)13题C(1,)A(5,2)B(1,0)xyO13.给出平面区域(如图),若使目标函数:z=ax+y(a>0)取得最大值的最优解有无数多个,则a的值为.14.不等式的解集是________________.15.已知数列的前项和,则其通项;若它的第项满足,则.16.椭圆长轴上一个顶点为,以为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是.班级____________  姓名:______________  考场:____________  考号____________-------------------------------------

4、---------------密---------------------------封------------------------------------线----------------------------------------------------------高二数学答题卷一.选择题(本题共12小题,每小题5分,共60分)题号123456789101112答案第II卷二.填空题(本题共4小题,每小题4分,共16分)13..14..15.;.16..三.解答题(本题共74分)17.(本小题满分12分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,.(Ⅰ

5、)求B的大小;(Ⅱ)若,,求b.18.(本小题满分12分)设是等差数列,是各项都为正数的等比数列,且,,.(Ⅰ)求,的通项公式;(Ⅱ)求数列的前n项和.19.(本题满分12分)某单位要建造一间地面面积为的背面靠墙的矩形小房,房屋正面的造价为1200元/m2,房屋侧面的造价为800元/m2,屋顶的造价为5800元。如果墙高为3m,且不计房屋背面的费用,问怎样设计房屋能使总造价最低,最低总造价是多少元?20.(本题满分12分)已知双曲线与椭圆在轴上有公共焦点,若椭圆焦距为,它们的离心率是方程的两根,求双曲线和椭圆的标准方程.21.(本题满分12分)设数列的首项.(Ⅰ)求的通项公式;(

6、Ⅱ)设,证明,其中为正整数.密 封 线 内 不 要 答 题----------------------------------------------------密---------------------------封------------------------------------线----------------------------------------------------------22.(本题满分14分)已知椭圆与直线相交于两点、,且(为坐标原点).(Ⅰ)求的值;(Ⅱ)若椭圆的离心率在上变化时,求椭圆长轴长的取值范围.高二数学参考答案一.选择题(本题共6

7、0分,每小题5分)1.B2.A3.C4.C5.C6.B7.D8.A9.B10.B11.B12.D二.填空题(本题共16分,每小题4分)13..14..15.2n-10;8.16..三.解答题(本题共74分,)17.(本题满分12分)解:(Ⅰ)由,根据正弦定理得,所以,由为锐角三角形得.(Ⅱ)根据余弦定理,得.所以,.18.(本题满分12分)解:(Ⅰ)设的公差为,的公比为,则依题意有且解得,.所以,.(Ⅱ).,①,②②-①得.19.(本题满分12分)解:设底面矩形中与墙相对的边长为

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。