2、AE二CD;②BF=BG;③BH平分ZAHD;@ZAHC=60°◎△BFG是等边三角形;(©FG〃AD,其中正确的有()C.5个D.6个4•如图rAABC的面积为10cm2,AP垂直ZB的平分线BP于P,则"BC的面积为()C.6cm2D.7cm21•如图,点P是ZAOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,APMN周长的最小值是5cm,则ZAOB的度数是()A.25°B.30°C-35°D.40°2.女口图,在心ZkACB中,ZACB=90°,ZA二35。,点D是AB上一点,将此ZkABC沿CD折叠,
3、使B点落在AC边上的点B,处,则ZADB等于()A.35°B.30°C.25°D.20°3•如图,把长方形ABCQ沿EF对折后使两部分重合,若ZAEF=110°,则Zl=()A.50°B.35°C.30°D.40°4•如图,有一条长方形的宽纸带,按图折叠,则Za=()C.70°D.75°5•如图,MN是等边三角形ABC的一条对称轴,D为AC的中点,点P是直线MN上的一个动点,当PC+PD最小时,ZPCD的度数是()A.30°B.15°C.20°D.35°1•如图所示,在折纸活动中,小明制作了一张△ABC纸片点D,E分别在边AB,AC上
4、将△ABC沿着DE折叠压平,A与A重合,若ZA=70。,则Zl+Z2=()BA.70°B・110。C.130°D.140°二、填空题2.如图,四边形ABCD是正方形f直线h、12、13分别过a、B、C三点,h〃12〃h,若h与12之间的距离为4,12与13之间的距离为5,则正方形的边长为12.如图,点D,C,A在同一条直线上,在厶ABC中,ZA:ZABC:ZACB二3:5:10,若厶EDCMZXABC,则ZBCE的度数为13•如图,△ABC与厶DEF为等边三角形,其边长分别为a,b,则厶AEF的周长为13.如图,在△ABC中,ZB=Z
5、CzBD=CE,BE二CF.若ZA=40°z则ZDEF的度数为AA14.如图,在2x2方格纸中,有一个以格点为顶点的HBC,请你找出方格纸中所有与sQPC成轴对称且也以格点为顶点的三角形,这样的三角形共有个15.如图,在厶ABC中,AB二AC,AD丄BC于点D,点E,F为AD±的两点,若厶ABC的面积为12,则图中阴影部分的面积是16•如图是一个经过改造的台球桌面示意图(该图由相同的小正方形组成),图中四个角上的阴影部分分别表示四个入球孔•如果一个球按图中所示的方向被击岀(球可以经过多次反射),那么该球最后将落入号球袋.R号球袋3号球
6、袋17.如图,点P关于OA,OB的对称点分别是Pi,P2fPR分别交0A,OB于点C,D,PiP2=6cm,则厶PCD的周长为13.请在下图各组符号中找岀它们所蕴含的内在规律,然后在横线的空白处设计一个恰当的14.如图,将RtAABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.⑴如果AC二6cm,BC二8cm,试求厶ACD的周长;⑵如果ZCAD:ZBAD=1:2,求ZB的度数.15•在3x3的正方形格点图中,有格点△ABC和厶DEF,且厶ABC和厶DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的厶DEF.(每个3
7、x3正方形个点图中限画一种,若两个图形中的对称轴是平行的,则视为一种)16.如图,△ABC^WLA'BC关于直线对称,△A”B”C咲于直线EF对称.⑴画出直线EF;⑵直线MN与EF相交于点O试探究〃与直线所夹锐角Za的数量关AAM川A系.竝c厶“N13•如图,在长度为1个单位长度的小正方形组成的正方形网格中,点久B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线/成轴对称的厶;(2)求△ABC的面积;(3)在直线/上找一点P,使PB+PC的长最小.AC//1B14•如图,将长方形纸片ABCD沿EF折叠,使点A与点C重合,
8、点D落在点G处EF为折痕.⑴试说明:△FGC9AEBC;⑵若AB二&AD二4,求四边形ECGF(阴影部分)的面积.15.如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE^AADC;(2)若ZACD=15°,