32立体几何中的向量方法第2课时空间向量与垂直关系教案(人教A版选修2-1)

32立体几何中的向量方法第2课时空间向量与垂直关系教案(人教A版选修2-1)

ID:41831937

大小:464.52 KB

页数:22页

时间:2019-09-03

32立体几何中的向量方法第2课时空间向量与垂直关系教案(人教A版选修2-1)_第1页
32立体几何中的向量方法第2课时空间向量与垂直关系教案(人教A版选修2-1)_第2页
32立体几何中的向量方法第2课时空间向量与垂直关系教案(人教A版选修2-1)_第3页
32立体几何中的向量方法第2课时空间向量与垂直关系教案(人教A版选修2-1)_第4页
32立体几何中的向量方法第2课时空间向量与垂直关系教案(人教A版选修2-1)_第5页
32立体几何中的向量方法第2课时空间向量与垂直关系教案(人教A版选修2-1)_第6页
32立体几何中的向量方法第2课时空间向量与垂直关系教案(人教A版选修2-1)_第7页
32立体几何中的向量方法第2课时空间向量与垂直关系教案(人教A版选修2-1)_第8页
32立体几何中的向量方法第2课时空间向量与垂直关系教案(人教A版选修2-1)_第9页
32立体几何中的向量方法第2课时空间向量与垂直关系教案(人教A版选修2-1)_第10页
资源描述:

《32立体几何中的向量方法第2课时空间向量与垂直关系教案(人教A版选修2-1)》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、第2课时空间向量与垂直关系•三维目标1.知识与技能能用向量语言表述直线与直线、直线与平面、平面与平面的垂直关系,能用向量方法判断有关直线和平面垂直关系的立体几何问题.2.过程与方法通过本节教学使学生理解体会用向量方法解决立体儿何问题的思想及过程.3.情感、态度与价值观引导学生用联系与转化的观点看问题,体验在探索问题的过程中的受挫感和成功感,培养合作意识和创新精神.•重点难点重点:用向量方法判断有关直线和平面垂直关系的立体儿何问题.难点:用向量语言证明立体儿何屮有关垂直关系的问题.本节课重点和难点在于用向量证明垂直关系,应利用探究式教学以及多媒体帮助分散难点,强化重点.M诊方案设U

2、損方略谏校细解用“敎*•”需戈f(教师用书独具)•教学建议根据教学目标,应有一个让学生参与实践——探索发现——总结归纳的探索认知过程.因此本节课给学生提供以下4种学习的机会:(1)提供观察、思考的机会:用亲切的语言鼓励学生观察并用学生自己的语言进行归纳;(2)提供操作、尝试、合作的机会:鼓励学生大胆利用资源,发现问题,讨论问题,解决问题;(3)提供表达、交流的机会:鼓励学生敢想敢说,设置问题促使学生愿想愿说;(4)提供成功的机会:赞赏学生提岀的问题,让学生在课堂中能更多地体验成功的乐趣.•教学流程提出问题:立体几何中如何证明线线、线面、面面垂直?今引导学生回顾以往知识,并启发学生

3、思考用向量方法是否能够解决这一问题.n通过探究、分析,引导学生归纳出用向量证明线线、线面、面面垂直的方法.今通过例1及其变式训练,使学生掌握利用向量证明线线垂直.今通过例2及其变式训练,使学生掌握利用向量证明线而垂直.3完成例3及其变式训练,从而解决利用向量证明血血垂直问题.a归纳整理,进行课堂小结,整体认识本节课所学知识.n完成当堂双基达标,巩固所学知识并进行反馈矫正.h主导学课标解读1.掌握直线的方向向量和平面的法向量的求法.(重点)2.能利用方向向量和法向量处理线线、线面、面面间的垂直问题.(重点、难点)»ir1

4、线线垂直【问题导思】立体几何中怎样证明两条直线互相垂直?【提

5、示】(1)证明两直线所成的角为90。•⑵证明两直线的方向向量垂直.(3)转化为先证直线与平面垂直,再用线面垂直的性质.设直线/的方向向量为a=(a,a”如),直线加的方向向量为b=(b、,b2f〃3),贝9/_L加0么・/>=00@丄0丄+©如+G3”3=°・期空2」线面垂直【问题导思】1.如果已知直线的方向向量与平面的法向量,怎样证明直线与平面垂直?【提示】证明直线的方向向量与平面的法向量共线.2.除上述方法外,还有其他证明方法吗?【提示】可以证明直线的方向向量与平面内两相交直线的方向向量都垂直.设直线/的方向向量是“=(4,加,ci),平面a的法向量是”=@2,皿,©),则

6、/丄a如,◎)=&(©,如cQ(kWR).mw3]面面垂直若平面么的法向量况=(如,Ci),平面0的法向量^=(“2,b»Ci)9贝!Ja丄3^-^u_L=bb^~~CC2=,MMMMMMMMMMMM0.合作探究区I利用向量证明线线垂直图3-2-10卜例已知正三棱柱ABC~AlB[Ci的各棱长都为1,M是底面上BC边的中点,N是侧棱CG上的点,且CN=jcCt.求证:4B」MN.【思路探究】(1)若选鮎、AC.石]为基向量,你能用基向量表示励1与济吗?怎样证明历占為垂直?(2)若要建立空间直角坐标系,本题该怎样建立?你能用坐标表示向量力血与MN并证明它们平行吗?【自主解答】

7、法一设乔=“,AC=bf石i=c,则由已知条件和正三棱柱的性质,得a=b=c=fa・c=bc=O,AB=a+c,AM=^a+b),丽=/>+*,MN=AN—AM=—^a+^b+^c,••・/B].MN=(a+c).(—如+切+#c)=—*+*cos60°+0—0+0+

8、=0.:.AB}±MN,:.AB丄MN.法二设中点为O,作OOJ/AA.以O为坐标原点,建立如图所示的空间直角坐标系.力(一*,0,0),3(*,0,0),C(0,爭,0),N(0,爭,扌由已知得,5(*,0,1),TM为EC中点,.*.W=(-

9、,,

10、),历

11、=(1,0,1),;wi§i=-

12、

13、+o+

14、=o.:.MN丄個,:.AB}丄MTV.I规律方法I利用空间向量证明两直线垂直的常用方法及步骤:(1)基向量法:①选取三个不共线的已知向量(通常是它们的模及其两两夹角为已知)为空间的一个基底;②把两直线的方向向量用基底表示;③利用向量的数量积运算,计算出两直线的方向向量的数量积为0;④由方向向量垂直得到两直线垂直.(2)坐标法:①根据已知条件和图形特征,建立适当的空间直角坐标系,正确地写出各点的坐标;②根据所求出点的坐标求出两直线方向向量的坐标;③计算两直线方向向量的数量

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。