欢迎来到天天文库
浏览记录
ID:41802991
大小:967.50 KB
页数:13页
时间:2019-09-02
《小学奥数--排列组合教学方案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、小学奥数-----排列组合教案加法原理和乘法原理 排列与组合:熟悉排列与组合问题。运用加法原理和乘法原理解决问题。在日常生活中我们经常会遇到像下面这样的两类问题:问题一:从A地到B地,可以乘火车,也可以乘汽车或乘轮船。一天中,火车有4班,汽车有3班,轮船有2班。那么从A地到B地共有多少种不同的走法?问题二:从甲村到乙村有两条道路,从乙村去丙村有3条道路(如下图)。从甲村经乙村去丙村,共有多少种不同的走法?解决上述两类问题就是运用加法原理和乘法原理。加法原理:完成一件工作共有N类方法。在第一类方法中有m1种不同的方法,在第二类方法中有m2种不同的方法,……,在第N类方法中有mn种不
2、同的方法,那么完成这件工作共有N=m1+m2+m3+…+mn种不同方法。运用加法原理计数,关键在于合理分类,不重不漏。要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。合理分类也是运用加法原理解决问题的难点,不同的问题,分类的标准往往不同,需要积累一定的解题经验。乘法原理:完成一件工作共需N个步骤:完成第一个步骤有m1种方法,完成第二个步骤有m2种方法,…,完成第N个步骤有mn种方法,那么,完成这件工作共有m1×m2×…×mn种方法。运用乘法原理计数,关键在于合理分步。完成这件工
3、作的N个步骤,各个步骤之间是相互联系的,任何一步的一种方法都不能完成此工作,必须连续完成这N步才能完成此工作;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此工作的方法也不同。这两个基本原理是排列和组合的基础,与教材联系紧密(如四下《搭配的规律》),教学时要先通过生活中浅显的实例,如购物问题、行程问题、搭配问题等,帮助孩子理解两个原理,再让孩子学习运用原理解决问题。运用两个原理解决的都是比较复杂的计数问题,在解题时要细心、耐心、有条理地分析问题。计数时要注意区分是分类问题还是分步问题,正确运用两个原理。灵活机动地分层重复使用或综合运用两个原理,可以巧妙解决很多复杂的
4、计数问题。小学阶段只学习两个原理的简单应用。【例题一】每天从武汉到北京去,有4班火车,2班飞机,1班汽车。请问:每天从武汉到北京去,乘坐这些交通工具共有多少种不同的走法?【解析】运用加法原理,把组成方法分成三类:一类乘坐火车,二类乘坐飞机,三类乘坐洗车.解:4+2+1=7(种)【例题二】用1角、2角和5角的三种人民币(每种的张数没有限制)组成1元钱,有多少种方法?【解析】运用加法原理,把组成方法分成三大类:①只取一种人民币组成1元,有3种方法:10张1角;5张2角;2张5角。②取两种人民币组成1元,有5种方法:1张5角和5张1角;一张2角和8张1角;2张2角和6张1角;3张2角和
5、4张1角;4张2角和2张1角。③取三种人民币组成1元,有2种方法:1张5角、1张2角和3张1角的;1张5角、2张2角和1张1角的。解:所以共有组成方法:3+5+2=10(种)。【例题三】在所有的两位数中,十位数字比个位数字大的两位数共有多少个?【解析】运用加法原理,把组成的三位数分为九类:十位是9的有9个,十位是8的有8个,……十位是1的有1个.解:共有:1+2+3+……+9=45(个)【例题四】各数位的数字之和是24的三位数共有多少个?【解析】一个数各个数位上的数字,最大只能是9,24可分拆为:24=9+9+6;24=9+8+7;24=8+8+8。运用加法原理,把组成的三位数分
6、为三大类:①由9、9、8三个数字可组成3个三位数:998、989、899;②由9、8、7三个数字可组成6个三位数:987、978、897、879、798、789;③由8、8、8三个数字可组成1个三位数:888。解:所以组成三位数共有:3+6+1=10(个)。【例题五】有一批长度分别为1,2,3,4,5,6,7和8厘米的细木条若干,从中选取适当的3根木条作为三条边可以围成多少个不同的三角形?【解析】围三角形的依据:三根木条能围成三角形,必须满足任意两边之和大于第三边。要满足这个条件,需要且只需要两条较短边的和大于最长边就可以了。这道题的计数比较复杂,需要分层重复运用加法原理。根据三
7、角形三边长度情况,我们先把围成的三角形分为两大类:第一大类:围成三角形的三根木条,至少有两根木条等长(包括三根等长的)。由题目条件,围成的等腰三角形腰长可以为1、2、3、4、5、6、7、8厘米,根据三角形腰长,第一大类又可以分为8小类,三边长依次是:①腰长为1的三角形1个:1、1、1。②腰长为2的三角形3个:2、2、1;2、2、2;2、2、3。③腰长为3的三角形5个:3、3、1;3、3、2;3、3、3;3、3、4;3、3、5。④腰长为4的三角形7个:4、4、1;4、4、2;……4
此文档下载收益归作者所有