资源描述:
《山东工商学院概率统计练习册重点》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、2,3,有一批产品共N个,其中M个次品,现从中任取N个,求恰有M个次品的概率是多少?解:设A={恰有M个次品}P(A)=4,有一位同学写了N封信,若他任意将N封信装入N个信封中求第i张信纸恰好装入第i个信封中的概率?解:设A二{第:张信纸恰好装入第i个信封中}P(A)=-N5,1袋中装有红,黄,白球各一个,每次任取一个,有放回的抽取三次,求取到的三个球中没有红球或黄球的概率?解:设:A={三个球中无红球}B={三个球中无黄球}ccc278272727P(A+B)=P(A)+P⑻-P(AB)=-96,一个家庭中有两个小孩,已知有一个女孩,求另一个也是女孩的概率?
2、解:设:A={已知有一个是女孩}B={另一个也是女孩}P(A)=1-P(B
3、A)=P(AB)7,10个签中4个是难签,3人参加抽签,甲先,乙次,丙最后。求甲乙都抽到难签,甲没有抽到难签而乙抽到难签及甲乙丙都没有抽到难签的概率?解:设人二{甲抽到难签}B二{乙抽到难签}C二{丙抽到难签}P(AB)=P(A)P(BIA)=^P(亦)=P(A)P(B
4、A)=
5、^P(ABC)=P(A)P(B
6、A)P(C
7、8,一个袋中有五个乒乓球,其中三个新,两个旧,每次取一个,无放回的抽取两次,求第二次抽到新球的概率?解:设人二{第一次取新球}B={第二次取新球}P(A)=
8、P(A)=
9、P
10、⑻A)=扌P(B)=P(A)P(B
11、A)+P@)P(B
12、A)=9,一个机床有三分之一的时间加工零件A,其余时间加工零件B,加工零件A时,停机的概率是0.3,加工零件B时,停机的概率是0.4,求这个机床停机的概率?解:设人={加工A零件}B={加工B零件}C={机床停产}P(C)=P(A)P(C
13、A)+P(B)P(C
14、B)=0.36710,已知男人中有5%是色盲患者,女人中有0.25%是色盲患者,从男女人数相等的人群中随机挑选一人,恰好是色盲患者,问此人是男性的概率是多少?解:设:A={任选一人是男性}灭二{任选一人是女性}B={任选一人是色盲患者}P(B)=P(A)
15、P(B
16、A)+P(A)P(B17)=0.02625;
17、B)二P(A)P(B
18、A)_20P(B)-~21-201P(AlB)=l-P(AlB)=l-—=—11,一型号的高射炮,每一门炮发射一弹击中飞机的概率为0.6,现若干门炮同时发射,问欲以99%的把握击中来犯的一架敌机,至少需要几门炮?解:设:配置n门炮人={第i门炮击中匕机}i=1,2,…,〃B={敌机被击中}p(b)=p(a+A2+・・・4J=i-戸仏+企+・・・+4〃)=1"(入石・・兀)=1一戶(瓦)…P(可)=1-0.4"no.99n>5.026至少配置6门炮12,一批产品的废品率为0.1,每次抽取1个,
19、观测后放回,下次再取1个,共重复3次,求3次中恰有两次抽到废品的概率.解:设:A二{3次恰有2次抽到废品}P(A)=C^(0.12l-0.1广2=0.02713,设X~U(-a,a),分别确定满足下面关系式的正数a:(l)p(x>l)=i;⑵P(
20、X
21、>1)=P(
22、X
23、<1)ClI1_]〔a1解:.(1)f——dx=—=>d=3;(2)[——dx+[——dx=f——dxna=2f2a3ila$2a(k=0.1.2.3)求:(1)常数a;(2)13,设随机变量X的概率分布为P(X=K)缶求P(X<2)?fp(X=Q=l得Jt=()105a=176P(X<2)=P(X
24、=0)+P(X=1)=10517635448,对一盒12只晶体管作不放回抽样,每次1只,直到抽到合格品为止,已知盒中有9只合格品3只不合格品,求抽样次数的概率分布。解:设X={直到抽到合格品为止所需抽样次数X={1,234}P(X=l)=3/4,P(X=2)=9/44,P(X=3)=9/220,P(X=4)=1/2209,设高速公路上每天发生交通事故的次数服从入=2的泊松发布。已知今天上午该公路上发生了一起交通事故,求今天该公路上至少发生3起交通事故的概率。解:设X={该公路上每天发生的交通事故},X〜P⑵P(X>3
25、X>1)P(X>3)P(X>1)1—0.6767
26、1-0.1315=0.373910,已知随机变量X的密度函数是g)=F广总°2。)求常数A和PQ-l〈XWa+1).+8解:(1)^(p{x)dx=AAe'^clx=w"d(_/k)=l^A=e^;ag+Ia+l(2)P(a-l<%v(x,r)=85,D(X-Y)=DX+DY-2Co#(X,Y)=3717,