资源描述:
《数字信号处理第3章答案史林赵树杰编著》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、第三章作业题答案作业:%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%3.2设X(ej<0)是序列的离散时间傅里叶变换,利用离散时间傅里叶变换的定义及性质,求下列各序列的离散时间傅里叶变换。(4)g(n)=x(2ti)解:利用DFT的定义进行求解。G(严)=乞8(小严(这是一种错误的解法,正确的如下所示。)=£x(2n)e~j^+8・(0加=一8=x(严)G(R")=》g(n)e~J(0,tm=2n=为x(2n)e-j(,At=为”=Y>加=一8(注意,此处n为奇数的项为零。)二血)+(j)“班讣s«=-<*>/=£丄[兀⑺)+严兀
2、何]严咗二丄x(严勺+丄x(小必词)=-X(e^2)+-X(-^2)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%3.3试求以下各序列的离散时间傅里叶变换。8]“兀5(〃)=》(丁)力(斤一3加)〃戶04解:利用DTFT的定义和性质进行求解。X(严)二工兀5(〃0泅4-oooo1=工工G)和-3加0曲?:=-<»加=0牛一一//=-<»(-)8{n一3m)严4)3〃?11一1/4严%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%3・4设兀⑺)是一有限长序列,已知,、[-
3、1,2,0,-3,2,1;料=0丄2,3,4,5咖%其它它的离散时间傅里叶变换为X(R")。不具体计算X(£^),试直接确定下列表达式的值。(3)解:不计算X(R0),解法如下:X(n)=-LrX(ejM}ejMtdco令n=0,贝!J:x(0)=_L^X(eJa})dco=-l因此,・:xW®)da)=-2兀%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%3.11证明:(1)若序列兀⑺)是实偶函数,则其离散时间傅里叶变换X(ejM)是血的实偶函数。(2)若序列兀⑺)是实奇函数,则其离散时间傅里叶变换X(ei(0)是纯虚数,且是。的
4、奇函数。解:此题求解需要利用DTFT的性质DTFT[x(-n)]和IDTFT^(严)]首先,(1)当班〃)为实偶序列时:x(-n)=x(n)根据DTFT的性质,可知:DTFT[x(-n)=X(e-j(0)因此:X(e-jM)=X(ej(,))因此,X(R”)为血的偶函数。此外,DTFT性质,IDTFT^X^(严)]=x(-n)=x(n)=IDTFT^X(严)]因此,X(ej(0)为实函数。综上,X(R”)为Q的实偶函数。(2)利用同样的性质可以证明若序列兀⑺)是实奇函数,则其离散时间傅里叶变换X(RQ)是纯鹿数,且是e的奇函数。%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5、%%%%%%%%%%%%%%%%%%%%%%%3.16若序列x(h)是因果序列,己知其离散时间傅里叶变换X(£沟)的实部Xr(丘沟)为Xr("")=1+COS69求序列x(n)及其离散时间傅里叶变换X(eja))o解:此处的条件为:班〃)是因果序列。因此此题的求解必然使用因果序列的对称性。注意:此处并没有提及班册为实序列,因此,此题需加如条件兀5)为实序列。XR^)=DTFT[xe^=1+COS(69)=1+[严+严]/2注意,在常见序列DTFT中,A(e>)=DTFT[^(n)]=lo根据位移特性,DTFT[x(n-n())]=X。因此,=5(比)+[5(比一1)+5(比+1)]/2因此可得
6、:0n<01n=0x(n)=<讣)n=0=<1n=12xjn)n>00elsex(严)=£兀(町厂劭=1+0%H=_8%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%3.17若序列兀⑺)是实因果序列,x(0)=1,已知其离散时间傅里叶变换X(严)的虚部X/(R")=-sinp求序列%(«)及其离散时间傅里叶变换x(R")。解:X,(ejM)=—sine二一丄「严一严八)2八1FT[_x(f(町]=兀(严)=-十加-严]=£x°(町严乙打=Y>0,Z2<01,n=0n=1else2xo(n),n>0[0,-re^z'x+re'x(n
7、)=<£(〃),n=0=<,X(£沟)二£兀(町厂加=l+£%斤二YO%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%3.21试计算下列各序列的z变换和相应的收敛域,并画出各自相应的零极点分布图。(5)x5(n)=Arncos(©〃+(p)u(n),0