《Engineering surface atomic structure of》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
ARTICLEReceived16May2016|Accepted9Aug2016|Published21Sep2016DOI:10.1038/ncomms12876OPENEngineeringsurfaceatomicstructureofsingle-crystalcobalt(II)oxidenanorodsforsuperiorelectrocatalysisTaoLing1,2,*,Dong-YangYan1,*,YanJiao2,*,HuiWang3,YaoZheng2,XueliZheng1,JingMao1,Xi-WenDu1,ZhenpengHu4,MietekJaroniec5&Shi-ZhangQiao1,2Engineeringthesurfacestructureattheatomiclevelcanbeusedtopreciselyandeffectivelymanipulatethereactivityanddurabilityofcatalysts.Herewereporttuningoftheatomicstructureofone-dimensionalsingle-crystalcobalt(II)oxide(CoO)nanorodsbycreatingoxygenvacanciesonpyramidalnanofacets.TheseCoOnanorodsexhibitsuperiorcatalyticactivityanddurabilitytowardsoxygenreduction/evolutionreactions.Thecombinedexperimentalstudies,microscopicandspectroscopiccharacterization,anddensityfunctionaltheorycalculationsrevealthattheoriginsoftheelectrochemicalactivityofsingle-crystalCoOnanorodsareintheoxygenvacanciesthatcanbereadilycreatedontheoxygen-terminated{111}nanofacets,whichfavourablyaffecttheelectronicstructureofCoO,assuringarapidchargetransferandoptimaladsorptionenergiesforintermediatesofoxygenreduction/evolutionreactions.Theseresultsshowthatthesurfaceatomicstructureengineeringisimportantforthefabricationofefficientanddurableelectrocatalysts.1TianjinKeyLaboratoryofCompositeandFunctionalMaterials,KeyLaboratoryforAdvancedCeramicsandMachiningTechnologyofMinistryofEducation,InstituteofNew-Energy,SchoolofMaterialsScienceandEngineering,TianjinUniversity,Tianjin300072,China.2SchoolofChemicalEngineering,TheUniversityofAdelaide,Adelaide,SouthAustralia5005,Australia.3KeyLaboratoryofAerospaceMaterialsandPerformance(MinistryofEducation),SchoolofMaterialsScienceandEngineering,BeihangUniversity,Beijing100191,China.4SchoolofPhysics,NankaiUniversity,Tianjin300071,China.5DepartmentofChemistryandBiochemistry,KentStateUniversity,Kent,Ohio44242,USA.*Theseauthorscontributedequallytothiswork.CorrespondenceandrequestsformaterialsshouldbeaddressedtoS.-Z.Q.(email:s.qiao@adelaide.edu.au)ortoX.-W.D.(email:xwdu@tju.edu.cn)ortoZ.H.(email:zphu@nankai.edu.cn).NATURECOMMUNICATIONS|7:12876|DOI:10.1038/ncomms12876|www.nature.com/naturecommunications1 ARTICLENATURECOMMUNICATIONS|DOI:10.1038/ncomms12876hegrowingconcernsoverclimatechangeandenergyimmobilizeddirectlyonacarbonfibrepaper(CFP)substratesecurityhavestimulatedarapiddevelopmentinthe(Fig.1a–c)viaasimpleandwell-controlledcationexchangeTgenerationofcleanenergy1.Electrocatalystsplayakeymethod(SupplementaryFig.1).Thissynthesiswasaccomplishedroleinsustainableenergyproduction,includingfuelcells2,byconvertingSCzincoxide(ZnO)NRs(SupplementaryFig.2)tometal-airbatteries3–5andwatersplitting6.Currently,nobleCoONRs(SupplementaryFig.3)viatheaforementionedcationmetalsandtheircomplexesarethemostefficientcatalysts7–9,exchangereactioningasphase43.AcontrolledfabricationofCoObuttheirhighcostandscarcitygreatlyrestrictscommercialNRswithtailorablelengthwasachievedbyprecisetuningtheapplications10.Transitionmetaloxides(TMOs)areconsideredaslengthofZnONRsfromdozennanometrestoseveralmicronsthemostprobablealternativestonoblemetal-basedcatalysts(SupplementaryFig.4).duetotheirlowcost,nontoxicityandhighstability3,11–19.Themicrostructureofas-synthesizedCoONRswasinvesti-Nevertheless,thereisstillanurgentneedtofurtherimprovetheirgatedbyscanningelectronmicroscopy(SEM)andtransmissionactivitiesandmakethemhighlycompetitiveincomparisonelectronmicroscopy(TEM).AsdisplayedinFig.2a,theentirewiththeirnoble-metalcounterpartsandusefulforpracticalsurfaceofCFPisuniformlycoveredwithCoONRs,whichareapplications.SCs(Fig.2c,inset).Interestingly,aftercationexchangereaction,Inthelightoftheabovediscussion,thesurfacestructurenumerousnanoporeswithsizesof5–20nmarevisibleontheengineeringofTMOcatalystsinvolvingbetterexposureofactivesurfaceandacrossNRs(SupplementaryFig.5).Surprisingly,sitestopromotetheirelectrocatalyticperformancebecomesofthesurfaceofCoONRsbecomesratherroughasevidencedbyparamountsignificance.Inthepastdecade,fundamentalresearchtooth-likegrowthswithsizesofabout5nm(Fig.2b).Atomiclevelhasdemonstratedthattherationaldesignofactivefacetswithhigh-angleannulardarkfield-scanningTEM(HADDF-STEM)favourableatomicarrangementandcoordinationisthemostimageshowsthatthesegrowthsaresharplyterminatedwith{111}promisingroutetocontroltheatomicstructureofnoblemetals7,8nanofacets(Fig.2c).Notably,thegradualcontrastvariationinandmetaloxide20–24particulatecatalysts,andachievehighthesesingletooth-likegrowthssuggestsaprogressivevariationincatalyticactivity.Furtherinvestigationssuggestthatthesurfacetheirthickness(Fig.2c).Simulationofexperimentalimagewasdefects25–28cangreatlyinfluencetheelectronicstructureandthusperformedtoaccuratelydeterminethethree-dimensionalatomicthesurfacechemistryoffacetedcatalysts29–36.Hence,aproperarrangementintheaforementionedgrowths.Aspeculatedmanipulationofdefectsonthedesiredfacetsofcatalystshasnanopyramidalstructurewithexposed{100}and{111}facetsreceivedaconsiderableattentionandbroughtsomeexcitingwasconstructedasshowninFig.2d,e.Figure2f,gindicatesagoodbreakthroughs.Forinstance,introductionofdefectson{100}agreementbetweentheexperimentalandsimulatedimages.facetshasbeeneffectivelyusedtotailorthebandstructureofMoreover,theintensityprofilealongtheterminated{111}facetintitaniumdioxide(TiO2)tomakeitsuitableforphotocatalytictheexperimentalimage(Fig.2h)closelyresemblesthatinthehydrogenevolutionundervisiblelightillumination30,33.simulatedone(Fig.2i).AgoodmatchbetweenexperimentalandEngineeringsulfurvacanciesonthebasalplanesofsimulatedHADDF-STEMimagesclearlydemonstratesthatthemolybdenumdisulfide(MoS2)nanosheetscanbeusedtofinelysurfaceofSCCoONRsissurroundedbynanopyramidsandtunetheadsorptionfreeenergyofhydrogentoachievethepreferentiallyexposed{111}facets.Thesurfaceareaofexposedhighestactivityoftheaforementionednanosheetstowards{111}facetsisestimatedtobe46%ofthetotalsurfaceareaofSChydrogenevolutionreactionamongvariousMoS2-basedCoONRs(SupplementaryFig.6andSupplementaryNote1).catalysts31.However,theapplicationoffacetedTMOcatalystsNotably,forCoOthesurfaceenergyof{111}ismuchhigherthaninelectrocatalysisisinitsinfancy37.Also,engineeringfavourablethatofotherlow-indexedfacets44.Suchhighpercentageof{111}defectsonthedesiredfacetsandunderstandingtheirroleinfacetswithoutforeignstabilizerisratherdifficulttoachieveviaelectrocatalysisattheatomiclevelisstilllacking.thermodynamicallycontrolledsynthesis44.However,inourVeryrecently,one-dimensional(1D)nanoarraysdirectlykinetics-governedcationexchangestrategy,facetswithhighgrownonthecurrentcollectorshaveattractedalotofattentionsurfaceenergyanddefects(discussedlater)areforcedtobeinelectrocatalysis16,38–42becausetheir1Dmorphologyassuresexposedtofacilitatetheionexchangeprocess45,assuringadequatediffusionofreactantsandrapidchargetransport.theformationofalargeamountofcleananddefect-rich{111}Althoughagreatprogresshasbeenachievedinelectrocatalysis,facetsonthesurfaceofSCCoONRs,whichiscertainlymuchlesshasbeendonetowardsengineeringthesurfaceatomichighlypreferableforcatalysis.Furthermore,itshouldbestructureoftheaforementionednanoarraystoexploretheirfullnotedthat{111}facetsofthebulkCoOarepolar,eitherpotential.Herein,wereportthesurfacestructureengineeringofterminatedbyoxygen(O)orCo-atomiclayer46.Adetailedsingle-crystal(SC)CoOnanorods(NRs)throughcreatingdesiredX-rayphotoelectronspectroscopy(XPS)analysisindicatesfacetsanddefects(Fig.1).Ourexperiments,microscopicandthattheexposed{111}facetsonCoONRsshouldbespectroscopiccharacterizationandthedensityfunctionaltheoryO-terminated(SupplementaryFig.7,SupplementaryTable1(DFT)computationstudiesdemonstratethattheO-vacanciesandSupplementaryNote2).presentonthepyramidalnanofacetsofCoONRscanbeeffectivelyusedtotailortheelectronicstructureofNRs,whichAnalysisofO-vacancy-richpyramidalnanofacets.Tofurtherresultsinrapidchargetransferandfavourableenergeticsforbothprobethelocalchemicalandelectronicenvironmentontheoxygenreductionreaction(ORR)andoxygenevolutionreactionsurfaceofSCCoONRs,XPSandsynchrotron-basedX-ray(OER)asevidencedbyexcellentactivityanddurabilityofCoOabsorptionnearedgefinestructure(XANES)spectroscopyNRstowardsbothreactions.Significantly,theirORRactivitymeasurementswereperformed.TheXPSO1sspectrumsuggestsapproachesthatofplatinum(Pt)catalystsandtheirOERactivityanenrichmentofO-vacanciesonthesurfaceofSCCoONRsexceedsthatofrutheniumdioxide(RuO2)catalysts;theiroverall(SupplementaryFig.7a).FurtherevidencecomesfromacloseactivityiscomparabletothatofthebestbifunctionalORR/OERinspectionofthefinestructureoftheO-KedgeofXANEScatalysts.spectrum(Fig.3a),inwhichthepeakatB536.0eVassignedtoOdeficiency47,48inSCCoONRsismuchhigherthanthatofResultsreferenceCoO.ThisisalsoconsistentwiththeobservationofaSynthesisandcharacterizationofSCCoONRs.First,wereportnoticeablepeakshiftinCo-L2,3edgetowardslowphotonenergythesynthesisofSCCoONRswithtexturedpyramidalnanofacetsandCo2pXPSspectrumtowardslowbindingenergyofSCCoO2NATURECOMMUNICATIONS|7:12876|DOI:10.1038/ncomms12876|www.nature.com/naturecommunications NATURECOMMUNICATIONS|DOI:10.1038/ncomms12876ARTICLEabCoONRarraysoncarbonfiberSingle-crystalOOH–2dcOERORRCoOActivevacancy-richTexturednanopyramidsO-terminated{111}nanofacetsFigure1|SchematicillustrationofengineeringthesurfaceofSCCoONRs.(a)SCCoONRsfabricateddirectlyoncarbonfibresubstrate.(b)NumerousnanoporespresentonthesurfaceandacrossSCNRs.(c)ThesurfaceofSCCoONRscoveredwithtexturednanopyramids.(d)Thedominantexposedfacetsofnanopyramidsareelectrochemicallyactivevacancy-richO-terminated{111}facets.NRs(Fig.3bandSupplementaryFig.8),whichisanindicativeofbetterdurabilityofactivereactionsitespresentonSCCoONRselectrontransferfromO-vacanciestoCodband.Thus,a(SupplementaryFigs12andSupplementaryFig.13).Moreover,combinationofXANESandXPSresultsprovidesacrucialevenafter3,000cyclecatalytictestswithacceleratedscanrateevidenceforthepresenceofabundantO-vacanciesonthesurfaceof100mVs1,SCCoONRsstillretainedtheirstructureofSCCoONRs,thequantityofwhichisevenhigherthanthaton(SupplementaryFig.14).Thisexcellentdurabilityoriginatesthesurfaceofpolycrystalline(PC)CoONRswiththreefoldlargerfromdirectgrowthofSCCoONRsontheCFPsubstratetosurfacearea(SupplementaryTable1).OurDFTcomputationsavoidaggregatinganddetachingproblems,whichareusuallyindeedrevealthattheO-vacancyformationenergyontheencounteredinotherfacetedcatalysts49.O-terminated{111}facets(hereafter,referredtoas‘{111}-OAsregardstheOERactivity(Fig.4d),SCCoONRsdeliverafacet’)isby3eVlowerthanthecorrespondingvaluesof{100}currentdensityof10.0mAcm2(EJ¼10)at1.56VRHEandaand{110}facets(Fig.3c).Clearly,suchasignificantreductioninTafelslopeof44mVperdecade.SuchexcellentOERactivityisthevacancyformationenergyresultsinlargerconcentrationofbetterthanthatofthecommercialRuO2catalyst.Importantly,theequilibriumO-vacancieson{111}-OfacetsofSCCoONRs.ItSCCoONRsexhibitanoutstandingoverallelectrodeactivityindicatesthatthesurfacedefectscanbetunedandstabilizedasindicatedbylowervalue(DE¼0.71V)ofthedifferencethroughfacetengineering.betweentheORRandOERmetrics(DE¼EJ¼10E1/2)16,50,outperformingthemostofthereportedhighlyactivereversibleoxygencatalysts(SupplementaryTable2).ThisvalueisalsoActivityanddurabilityofSCCoONRstowardsORR/OER.As-comparabletothevalueobtainedforCo3O4NCsdepositedonfabricatedSCCoONRswithlengthof1.6mmonCFPwere11N-dopedgraphene(DE¼0.71V),whichisconsideredasthedirectlyusedastheworkingelectrodesforbothORRandOERmostefficientbifunctionalcatalyst.(SupplementaryFig.9),andtheirperformanceswerecomparedwithanalogouselectrodespreparedbyusingPCCoONRs(SupplementaryFig.10),thestate-of-artPtandRuO2catalystsEnhancementofelectronicconductivityofSCCoONRs.HighsupportedonCFP.Thepolarizationcurveswererecordedwith-activityanddurabilityofSCCoONRsclearlydemonstratesthatoutiRcorrection.AsregardsORR(Fig.4a,bandSupplementarytheas-synthesizedSCCoONRsarehighlyversatileandefficientFig.11a),PCCoONRsexhibitlowactivity,whileSCCoONRselectrocatalyststowardsbothORRandOER.Oneprerequisiteinshowanonsetpotentialof0.96Vversusreversiblehydrogenthedesignofahighlyefficientelectrocatalystisarapidelectronelectrode(VRHE),ahalf-wavepotential(E1/2)of0.85VRHEandatransfer16.ItisacknowledgedthattheelectronicconductivityofTafelslopeof47mVperdecade,whichapproachthevaluesTMOsisrelativelypoor15,greatlylimitingtheirelectrocatalyticmeasuredforPtcatalysts.Thesevaluesarebetterthanthoseofactivities.InthecaseofSCCoONRs,alargequantityofthewell-developedcobaltoxidenanocrystals(NCs)coupledwithO-vacancieslocalizedonthe{111}-Ofacets,aswellastheSCcarbonmaterials(SupplementaryTable2).Moreover,SCCoOnatureinheritedfromtheZnONRsconsiderablyenhancetheNRsshowhighselectivitytowardsORRwithstrongmethanolcarrierconcentrationinSCCoONRs,whichisoneorderhighertolerance(Fig.4a,inset).BesidesanextraordinaryactivitythanthatinPCCoONRs(SupplementaryFig.15andtowardsORR,SCCoONRsalsodemonstrateanexcellentSupplementaryNote3).Moreover,thenucleationandgrowthdurability.AsshowninFig.4c,SCCoONRsretain97%oftheofSCCoONRsdirectlyonCFPalsoassuresarapidcollectionofinitialORRcurrentafter10hcontinuoustesting,whereasPtcharges.Theaforementionedthreeimportantcharacteristicscatalystlostmorethan26%ofitsinitialcurrent,confirmingmuchremarkablyenhancetheelectronicconductivityofSCCoONRs.NATURECOMMUNICATIONS|7:12876|DOI:10.1038/ncomms12876|www.nature.com/naturecommunications3 ARTICLENATURECOMMUNICATIONS|DOI:10.1038/ncomms12876abc{111}Nanofacets–––0.25nm(111)(111)dfExperimentgSimulation(001)–––(111)(111)(100)hie{111}NanofacetsExperimentSimulation–(111)––11)(1Intensity(a.u.)Intensity(a.u.)[110]0.00.51.01.52.02.53.03.5050100150200250300350Distance(nm)Distance(pixel)Figure2|StructuralcharacterizationofSCCoONRs.(a)Top-viewSEMimageofSCCoONRsfabricateddirectlyonCFP.Scalebar,10mm.TheinsetinashowsmorphologyofSCCoONRs.Scalebar,1mm.(b)HighmagnificationTEMimageofanindividualSCCoONRwithsaw-likeedges.Scalebar,20nm.(c)High-resolutionHAADF-STEMimagetakenfromtheoutermostsurfaceofasingleSCCoONRrevealingtheexposed{111}nanofacets(indicatedbyorangeandgreenarrows),withinsetshowingthecorrespondingselectedareaelectrondiffractionpatterntakenfrom[110]zoneaxis.Scalebar,2nm.(d)Atomicmodelofananopyramidenclosedwith{100}and{111}facets,and(e)theprojectionofthispyramidalstructurealong[110]zoneaxis.(f,g)ExperimentalandsimulatedHADDF-STEMimagesofthepyramidalstructure,respectively.Scalebarinf,1nm.Notethatinelasticandneutronscatteringswerenotconsideredinthesimulation,whichcontributetothebackgroundinh.(h,i)Theintensityprofilestakenfromorangeandgreylinesinfandg,respectively.abc5OKSCCoONRsCoL2,3SCCoONRs536.0eVReferenceCoOReferenceCoO40.4eV781.5eV32Intensity(a.u.)Intensity(a.u.)Vacancyformationenergy(eV)1781.7eV0530535540545550555560770780790800810(100)(110)(111)-OPhotonenergy(eV)Photonenergy(eV)Figure3|AnalysisofO-vacanciesonthepyramidalnanofacetedsurfaceofSCCoONRs.(a,b)O-KedgeandCo-L2,3edgeXANESspectraofSCCoONRsandreferenceCoO,respectively.InathepeakatB536eVofSCCoONRsisassignedtoOdeficiency.Inbthepeaksat781.5andB800eVofSCCoONRsshifttowardslowphotonenergyrelativetothereferenceCoO,indicatingthetransferofelectronsfromO-vacanciestoCodband.(c)O-vacancyformationenergieson{100},{110}and{111}-OfacetsofCoOshowingasignificantreductioninthevacancyformationenergyon{111}-Ofacets.4NATURECOMMUNICATIONS|7:12876|DOI:10.1038/ncomms12876|www.nature.com/naturecommunications NATURECOMMUNICATIONS|DOI:10.1038/ncomms12876ARTICLEab300.42ORRORR–8.4Methanoladdition)0.3920–2–9.0Pt–9.6(mAcm)J0.36–210PCCoONRs–10.2SCCoONRs73mVdec–1–10.80.33Pt(mAcm04008001,2001,600J–1Time(s)45mVdec0Overpotential(V)0.30SCCoONRsSCCoONRs–10PCCoONRs47mVdec–1Pt0.27Carbonfiberpaper0.60.70.80.91.01.11.2–0.4–0.20.00.20.40.60.8Potential(VversusRHE)LogJ(mAcm–2)cd800.40ORROER1000.36SCCoONRs60PCCoONRs0.32–162mVdec90)0.28–2SCCoONRsOverpotential(V)044mVdec–1/J80400.24JRuO265mVdec–1(mAcmJPt0.2070–0.6–0.4–0.20.00.20.40.60.8LogJ(mAcm–2)20SCCoONRs60PCCoONRsRuO2Carbonfiberpaper50002468101.31.41.51.61.7Time(h)Potential(VversusRHE)Figure4|BifunctionalORR/OERperformanceofSCCoONRs.(a)ORRlinear-sweepvoltammograms(LSVs)ofSC,PCCoONRsandPtcatalystsdirectlydepositedonCFPinO2-saturated1MKOHsolutionatscanrateof0.5mVs1withoutiRcorrection,withORRchronoamperometricresponsetomethanoladditionshownininset.(b)ORRTafelplotsofSC,PCCoONRsandPtcatalysts.(c)ORRchronoamperometricresponseofSCCoONRsandPtcatalystsataconstantvoltageof0.60VRHE.(d)OERLSVsofSC,PCCoONRsandcommercialRuO2catalystsdirectlydepositedonCFPinO2-saturated1MKOHsolutionatscanrateof0.5mVs1withoutiRcorrection,withthecorrespondingOERTafelplotsshownininset.abcd200.16120.10ORRORROEROER100.0815)0.12))–28–2)–2–20.06100.086(mAcm(mAcm(mAcmk(mAcm0.04JJ4k,specificJspecific5J0.040.02200.0000.00SCNCsPCNCsSCNCsPCNCsSCNCsPCNCsSCNCsPCNCsFigure5|IntrinsicORR/OERactivityofSCCoONCsincomparisonwiththeactivityofPCCoONCs.(a,b)JkandJk,specificforORRat0.6VRHE,respectively.(c,d)JandJspecificforOERat1.65VRHE,respectively.NATURECOMMUNICATIONS|7:12876|DOI:10.1038/ncomms12876|www.nature.com/naturecommunications5 ARTICLENATURECOMMUNICATIONS|DOI:10.1038/ncomms12876aO-OdistanceO1.24Å1.35Å1.23Å1.26Å2OCo{100}{110}{111}-O{111}-Ovb0=1.23V3URHE{100}ORR2{111}-O1{110}{111}-Ov(eV)0GΔOOOHOH2–1O–2OHOER–3ReactionpathwaycPristineCoOEFPDOSTotalO-2pCo-3dCo-3sdCoOwithO-vacanciesPDOSTotalO-2pEFCo-3dCo-3s–4–3–2–1012Energy(eV)Figure6|OriginofORR/OERactivityonvariousfacetsofCoO.(a)AtomicconfigurationsofO2moleculeson{100},{110},{111}-Oand{111}-OVfacets.Notably,on{110}and{111}-Ovfacets,theO–ObondofadsorbedO2isremarkablyelongated(theO–OdistanceofO2is1.23Å),suggestinganeffectiveactivationofO2inORR.(b)ThecalculatedORR/OERfreeenergydiagramattheequilibriumpotentialondifferentfacets.(c)Theprojecteddensityofstates(PDOS)onpristineCoOand(d)CoOwithO-vacancies.Thearrowindpointsnewelectronicstates,whichappearneartheFermilevelinCoOwithO-vacancies,responsiblefortheadsorptionofintermediatesontheO-vacancies.IntrinsicactivityofSCCoONCstowardsORR/OER.TospecificORRkineticcurrentdensity(Jk,specific)andthespecificdecoupletheenhancedactivityofSCCoONRsfromtheOERcurrentdensity(Jspecific),respectively(seedefinitionincontributionofadvanced1Dnanoarrayarchitecture,theSupplementaryTable3).AsshowninFig.5a,b,forORR,JkandintrinsicORR/OERactivityofSCCoONCswithsizesofJk,specificofSCCoONCsat0.6VRHEareabout4.2and7.2timesB50nm(SupplementaryMethod)wasevaluatedincompar-greaterthanthoseofPCCoONCs,respectively.AsregardsisontothatofPCCoONCs(SupplementaryFigs16–18andOER,JandJspecificofSCCoONCsat1.65VRHEareaboutSupplementaryNote4)andotherwell-developedparticulate1.5and2.6timeslargerthanthoseofPCCoONCs,respectivelycobaltoxidecatalysts(SupplementaryTable6).TheORR(Fig.5c,d).ThesecollectiveresultsclearlydemonstratethatthekineticcurrentandOERcurrentarenormalizedbytheintrinsicORR/OERactivityofCoOisstronglydependentonelectrochemicallyactivesurfaceareaofcatalysttoobtainthethesurfacestructure.6NATURECOMMUNICATIONS|7:12876|DOI:10.1038/ncomms12876|www.nature.com/naturecommunications NATURECOMMUNICATIONS|DOI:10.1038/ncomms12876ARTICLEORR/OERfreeenergydiagramandelectronicstructure.AnanoarrayelectrodescanpaveanewavenueforthefabricationofseriesofDFTcomputationswasconductedtogetafundamentalefficientanddurableTMO-basedelectrochemicaldevices.understandingofthecorrelationbetweenthesurfaceatomicstructureofCoOandtheORR/OERactivity.Fig.6aclearlyMethodsrevealsthattheatomicarrangementondifferentfacetsSynthesisofSCCoONRsonCFPsubstrate.ZnONRswithtailorablelengthsignificantlyaffectsadsorptionsitesandconfigurationofthe(SupplementaryFigs4and20)weregrownonCFPunderhydrothermalconditionsreactant,thatis,O2,inORR.Moreover,theoverallORR/OERandfinallyconvertedintoCoONRsusingacationexchangeprocessingasphasepathwaywascalculated,andthefreeenergydiagramatthe(SupplementaryFig.1).Specifically,theCFPloadedwithZnONRswasplacedin0thecentreofaquartztubeandcobaltchloride(CoCl2)powderwasplaced2.5cmequilibriumpotential(URHE¼1.23V)areshowninFig.6b.Asupstreamfromthetubecentre.Afterthequartztubewasoutgassedundervacuum,reportedbyNørskovetal.51–53,bothORRandOERinvolvefourargon(Ar)gasflow(50s.c.c.m.)wasintroducedintothesystem.Thefurnacewaselementaryreactionsteps,inwhichORRproceedsthroughtheheatedtoandkeptat600,650or700°Cfor30min,andthencooleddowntoroomformationofHOO*fromadsorbedO2,followedbyitsfurthertemperature.ItisfoundthatthecationexchangetemperaturecanconsiderablyaffecttheconcentrationofO-vacancies(SupplementaryTable7),andthusthereductiontoO*andHO*,whileOERproceedsinthereverseelectrocatalyticperformanceofSCCoONRs(SupplementaryFigs21–23anddirection.ForbothORRandOER,theidealthermodynamicfreeSupplementaryNote5).Theoptimalexchangetemperatureis600°CandusedinenergychangeoftheintermediatesshouldbejDGOOHj¼jthisstudyunlessspecificallynotified.Theloadingmassofas-synthesizedSCCoODGj¼jDGj¼0(refs51,52),indicatingnoenergywouldNRswasB0.19mgcm2.OOHbewastedtoactivatethereactions.AsillustratedinFig.6b,forORRalargejDGOOHjonthesurfaceof{100}and{111}-OCharacterization.SEMandTEMimagesweretakenonaHitachiS-4800SEMandfacetsindicatesthatthefirstelectrontransfersteptoreducetheaJOEL2100TEM,respectively.HAADF-STEMimageswerecollectedusingaadsorbedO2toOOH*isendothermic,whichisconsistentwithJEOLARM200FmicroscopewithSTEMaberrationcorrectoroperatedat200kV.HADDF-STEMimagesimulationwascarriedoutusingasoftwarepackageobservationsforthewell-developedmetalandmetaloxideMacTempasX.Theconvergentsemiangleandcollectionanglewere21.5andcatalysts17,53.Besides,thelargenegativeDGOandDGOHon200mrad,respectively.Theaberrationcoefficient(C)usedwasequalto1mm.s{110}and{100}facetsindicatethatthechemicaladsorptionofO*Inelasticandneutronscatteringswerenotconsideredinthesimulation.TheandOH*,respectively,istoostrong,whichisalsounfavourablesynchrotron-basedXANESmeasurementswerecarriedoutusingthesoftX-rayspectroscopybeamlineattheCanadianSynchrotron.XANESspectrawereforthesubsequentelectrocatalyticreactions.However,whenrecordedinthesurfacesensitivetotalelectronyieldwithuseofspecimencurrent.O-vacancyiscreatedonthesurfaceof{111}-O(hereafter,Allsampleswerescannedfrom750to820eVandfrom510to580eVin0.1eVreferredtoas‘{111}-OVfacet’),theformationofOOH*issteps,whichencompassestheCo-L2,3andO-Kabsorptionedges,respectively.facilitated,andalljDGOOHj,jDGOjandjDGOHjexhibitthelowestvaluesamongthefourfacets,suggestingthemostElectrochemicalcharacterization.ElectrochemicalmeasurementswerefavourableORRkineticsonthe{111}-OVfacets.Asregardsperformedinathree-electrodeelectrochemicalcellusinganHg/HgOelectrodeinOER,asimilaranalysisofthediagramforthereversereactionsaturatedKClsolutionasthereferenceelectrode,Ptplateasthecounterelectrodeshowsthatthe{111}-OvsurfaceoutperformstheotherthreeandtheCFPelectrodeastheworkingelectrode(SupplementaryFig.9).AflowofO2wasmaintainedovertheelectrolyte(1.0MKOH)duringmeasurementstofacets.Overall,the{111}-OvsurfaceexhibitsamediatedensuretheO2/H2Oequilibriumat1.23VRHE.adsorption–desorptionbehaviour(jDGOOHjjDGOjjDGOHj!0),whichisbeneficialfortheoverallORR/OER.Thus,thetheoryandexperimentareinanexcellentagreement,DFTcalculations.AllDFTcomputationswereperformedusingViennaAb-initioSimulationPackage.AneffectiveUvalueof3.7eVwasappliedforCo3dstates.suggestingthattheORR/OERactivityissuccessfullyenhancedTheprojectoraugmentedwavepseudopotentialwiththePerdew–Burke–Ernzerhofthroughatomicstructureengineering.Ourresultsdemonstrateexchange-correlationfunctionalwasusedinthecomputations.Therelevantdetails,thatthereisastrongcorrelationbetweenactivityandatomicreferencesanddataaregivenintheSupplementaryMethodssectionandinstructureofCoO;thatis,theORR/OERactivityofCoOincreasesSupplementaryTables4and5.inthefollowingorder{100}o{110}o{111}-Ov.Toourknowledgethisatomicscalestructure–functionrelationshiphasDataavailability.ThedatathatsupportthefindingsofthisstudyareavailablenotbeenconsideredforanyotherTMOsurfacesintheanalysisoffromthecorrespondingauthoronrequest.electrocatalysts.ThenatureoftheO-vacanciesonthe{111}-OfacetsisfurtherReferencesrevealedthroughinvestigationoftheirelectronicstructure1.Lewis,N.S.&Nocera,D.G.Poweringtheplanet:chemicalchallengesinsolar(Fig.6c,d).AsindicatedbythearrowinFig.6d,whenO-vacancyenergyutilization.Proc.NatlAcad.Sci.USA103,15729–15735(2006).iscreatedinCoO,somenewelectronicstatesarecreatedby2.Winter,M.&Brodd,R.J.Whatarebatteries,fuelcells,andsupercapacitors?Chem.Rev.104,4245–4269(2004).hybridizationofO-2p,Co-3dandCo-3sinthebandgap,which3.Li,Y.etal.Advancedzinc-airbatteriesbasedonhigh-performancehybridaredirectlyresponsibleforstrongeradsorptionofintermediateselectrocatalysts.Nat.Commun.4,1805(2013).ontheO-vacanciesandforhigherelectronicconductivityof4.Cheng,F.&Chen,J.Metal-airbatteries:fromoxygenreductionCoO(SupplementaryFig.19).Therefore,optimizationoftheelectrochemistrytocathodecatalysts.Chem.Soc.Rev.41,2172–2192(2012).electrocatalyticactivityofCoOthroughcreationO-vacancieson5.Zhang,J.,Zhao,Z.,Xia,Z.&Dai,L.Ametal-freebifunctionalelectrocatalystforoxygenreductionandoxygenevolutionreactions.Nat.Nanotechnol.10,the{111}-Ofacetscanbefinallyascribedtothesuccessful444–452(2015).engineeringoftheelectronicstructureofCoO.6.Wang,H.etal.Bifunctionalnon-noblemetaloxidenanoparticleelectrocatalyststhroughlithium-inducedconversionforoverallwatersplitting.Nat.Commun.6,7261–7261(2015).Discussion7.Zhang,L.etal.Platinum-basednanocageswithsubnanometer-thickwallsandwell-defined,controllablefacets.Science349,412–416(2015).Inconclusion,SCCoONRswithexposedvacancy-richpyramidal8.Tian,N.etal.SynthesisoftetrahexahedralplatinumnanocrystalswithnanofacetsweresuccessfullyfabricatedontheCFPsupport.high-indexfacetsandhighelectro-oxidationactivity.Science316,732–735Thecurrentexperimentalandtheoreticalstudyshowsthatthe(2007).creationofO-vacanciesonthe{111}-Ofacetsfavourablyaffects9.Chen,C.etal.HighlycrystallinemultimetallicnanoframeswiththeelectronicstructureofCoO,resultingintheenhancedchargethree-dimensionalelectrocatalyticsurfaces.Science343,1339–1343(2014).10.Bashyam,R.&Zelenay,P.Aclassofnon-preciousmetalcompositecatalyststransferandoptimalenergeticsforbothORRandOER,whichforfuelcells.Nature443,63–66(2006).booststheoverallelectrodeactivityofSCCoONRs.Ourwork11.Liang,Y.etal.Co3O4nanocrystalsongrapheneasasynergisticcatalystforindicatesthattherationaldesignoftheatomicsurfaceofoxygenreductionreaction.Nat.Mater.10,780–786(2011).NATURECOMMUNICATIONS|7:12876|DOI:10.1038/ncomms12876|www.nature.com/naturecommunications7 ARTICLENATURECOMMUNICATIONS|DOI:10.1038/ncomms1287612.Suntivich,J.etal.Designprinciplesforoxygen-reductionactivityonperovskite40.Jiang,P.etal.Acost-effective3Dhydrogenevolutioncathodewithhighoxidecatalystsforfuelcellsandmetal-airbatteries.Nat.Chem.3,546–550catalyticactivity:FePnanowirearrayastheactivephase.Angew.Chem.Int.Ed.(2011).53,12855–12859(2014).13.Suntivich,J.etal.Aperovskiteoxideoptimizedforoxygenevolutioncatalysis41.Liu,X.etal.HierarchicalZnxCo3-xO4nanoarrayswithhighactivityforfrommolecularorbitalprinciples.Science334,1383–1385(2011).electrocatalyticoxygenevolution.Chem.Mater.26,1889–1895(2014).14.Grimaud,A.etal.Doubleperovskitesasafamilyofhighlyactivecatalystsfor42.Wang,Y.etal.ReducedmesoporousCo3O4nanowiresasefficientwateroxygenevolutioninalkalinesolution.Nat.Commun.4,2439(2013).oxidationelectrocatalystsandsupercapacitorelectrodes.Adv.EnergyMater.4,15.Chang,S.H.etal.Functionallinksbetweenstabilityandreactivityofstrontium1400696(2014).ruthenatesinglecrystalsduringoxygenevolution.Nat.Commun.5,419143.Zhang,H.,Ling,T.&Du,X.-W.Gas-phasecationexchangetowardporous(2014).single-crystalCoOnanorodsforcatalytichydrogenproduction.Chem.Mater.16.Ma,T.Y.,Dai,S.,Jaroniec,M.&Qiao,S.Z.Metal-organicframeworkderived27,352–357(2015).hybridCo3O4-carbonporousnanowirearraysasreversibleoxygenevolution44.Wang,D.etal.ShapecontrolofCoOandLiCoO2nanocrystals.NanoRes.3,electrodes.J.Am.Chem.Soc.136,13925–13931(2014).1–7(2010).17.Cheng,F.etal.Rapidroom-temperaturesynthesisofnanocrystalline45.Rivest,J.B.&Jain,P.K.Cationexchangeonthenanoscale:anemergingspinelsasoxygenreductionandevolutionelectrocatalysts.Nat.Chem.3,79–84techniquefornewmaterialsynthesis,devicefabrication,andchemicalsensing.(2011).Chem.Soc.Rev.42,89–96(2013).18.Liang,Y.etal.Oxygenreductionelectrocatalystbasedonstronglycoupled46.Goniakowski,J.,Finocchi,F.&Noguera,C.Polarityofoxidesurfacesandcobaltoxidenanocrystalsandcarbonnanotubes.J.Am.Chem.Soc.134,nanostructures.Rep.Prog.Phys.71,016501(2008).15849–15857(2012).47.Karvonen,L.etal.O-KandCo-LXANESstudyonoxygenintercalationin19.Qian,L.etal.Trinarylayereddoublehydroxidesashigh-performanceperovskiteSrCoO3-d.Chem.Mater.22,70–76(2010).bifunctionalmaterialsforoxygenelectrocatalysis.Adv.EnergyMater.5,48.Petrie,J.R.etal.Straincontrolofoxygenvacanciesinepitaxialstrontium1500245(2015).cobaltitefilms.Adv.Func.Mater.26,1564–1570(2016).20.Hu,L.,Peng,Q.&Li,Y.SelectivesynthesisofCo3O4nanocrystalwithdifferent49.Zhou,K.&Li,Y.Catalysisbasedonnanocrystalswithwell-definedfacets.shapeandcrystalplaneeffectoncatalyticpropertyformethanecombustion.Angew.Chem.Int.Ed.51,602–613(2012).J.Am.Chem.Soc.130,16136–16367(2008).50.Gorlin,Y.&Jaramillo,T.F.Abifunctionalnonpreciousmetalcatalystfor21.Xie,X.etal.Low-temperatureoxidationofCOcatalysedbyCo3O4nanorods.oxygenreductionandwateroxidation.J.Am.Chem.Soc.132,13612–13614Nature458,746–749(2009).(2010).22.Yang,H.G.etal.AnataseTiO2singlecrystalswithalargepercentageof51.Man,I.C.etal.Universalityinoxygenevolutionelectrocatalysisonoxidereactivefacets.Nature453,638–641(2008).surfaces.ChemCatChem3,1159–1165(2011).23.Su,D.,Dou,S.&Wang,G.SinglecrystallineCo3O4nanocrystalsexposedwith52.Rossmeisl,J.etal.Electrolysisofwateronoxidesurfaces.J.Electroanal.Chem.differentcrystalplanesforLi-O2batteries.Sci.Rep.4,5767(2014).607,83–89(2007).24.Gao,R.etal.Facet-dependentelectrocatalyticperformanceofCo3O4for53.Norskov,J.K.etal.OriginoftheoverpotentialforoxygenreductionatarechargeableLi-O2battery.J.Phys.Chem.C119,4516–4523(2015).fuel-cellcathode.J.Phys.Chem.B108,17886–17892(2004).25.Cheng,F.etal.EnhancingelectrocatalyticoxygenreductiononMnO2withvacancies.Angew.Chem.Int.Ed.52,2474–2477(2013).Acknowledgements26.Oh,S.H.,Black,R.,Pomerantseva,E.,Lee,J.H.&Nazar,L.F.SynthesisofaThisworkwassupportedbytheNationalBasicResearchProgramofChinametallicmesoporouspyrochloreasacatalystforlithium-O2batteries.Nat.(2014CB931703),theNaturalScienceFoundationofChina(51571149,51471115,Chem.4,1004–1010(2012).21576202and21203099),theNaturalScienceFoundationofTianjincity27.Gao,R.etal.Theroleofoxygenvacanciesinimprovingtheperformanceof(15JCYBJC18200and13JCYBJC36800)andtheAustralianResearchCouncil(ARC)CoOasabifunctionalcathodecatalystforrechargeableLi-O2batteries.throughtheDiscoveryProjectprogramme(DP130104459,DP140104062andJ.Mater.Chem.A3,17598–17605(2015).DP160104866).DFTcalculationswereundertakenonSpecialProgramforApplied28.Gao,R.etal.Carbon-dotteddefectiveCoOwithoxygenvacancies:asynergeticResearchSuperComputationoftheNSFC-GuangdongJointFund(thesecondphase).designofbifunctionalcathodecatalystforLi-O2batteries.ACSCatal.6,WewouldliketothankNingLuforhiskindhelpinthiswork.400–406(2016).29.Bao,J.etal.Ultrathinspinel-structurednanosheetsrichinoxygendeficienciesforenhancedelectrocatalyticwateroxidation.Angew.Chem.Int.Ed.54,Authorcontributions7399–7404(2015).T.L.,X.-W.D.andS.-Z.Q.conceivedtheprojectanddesignedtheexperiments;30.Gordon,T.R.etal.NonaqueoussynthesisofTiO2nanocrystalsusingTiF4toT.L.andD.-Y.Y.performedtheexperiments;T.L.,H.W.andJ.M.carriedouttheTEMengineermorphology,oxygenvacancyconcentration,andphotocatalyticcharacterization,HADDF-STEMimagesimulationandanalysis;X.Z.performedtheactivity.J.Am.Chem.Soc.134,6751–6761(2012).XANEScharacterization;Y.J.,Z.H.andT.L.conductedtheDFTcalculations.Allauthors31.Li,H.etal.ActivatingandoptimizingMoS2basalplanesforhydrogendiscussedtheresultsandcommentedonthemanuscript.evolutionthroughtheformationofstrainedsulphurvacancies.Nat.Mater.15,48–53(2016).32.Lei,F.etal.OxygenvacanciesconfinedinultrathinindiumoxideporoussheetsAdditionalinformationforpromotedvisible-lightwatersplitting.J.Am.Chem.Soc.136,6826–6829SupplementaryInformationaccompaniesthispaperathttp://www.nature.com/(2014).naturecommunications33.Liu,G.etal.VisiblelightresponsivenitrogendopedanataseTiO2sheetswithCompetingfinancialinterests:Theauthorsdeclarenocompetingfinancialinterests.dominant{001}facetsderivedfromTiN.J.Am.Chem.Soc.131,12868–12869(2009).Reprintsandpermissioninformationisavailableonlineathttp://npg.nature.com/rep-34.Liu,X.etal.Oxygenvacancyclusterspromotingreducibilityandactivityofrintsandpermissions/.ceriananorods.J.Am.Chem.Soc.131,3140–3141(2009).35.Pan,J.,Liu,G.,Lu,G.Q.&Cheng,H.-M.OnthetruephotoreactivityorderofHowtocitethisarticle:Ling,T.etal.Engineeringsurfaceatomicstructureof{001},{010},and{101}facetsofanataseTiO2crystals.Angew.Chem.Int.Ed.single-crystalcobalt(II)oxidenanorodsforsuperiorelectrocatalysis.Nat.Commun.50,2133–2137(2011).7:12876doi:10.1038/ncomms12876(2016).36.Mefford,J.T.etal.WaterelectrolysisonLa1-xSrxCoO3-dperovskiteelectrocatalysts.Nat.Commun.7,11053(2016).ThisworkislicensedunderaCreativeCommonsAttribution4.037.Xiao,J.etal.SurfacestructuredependentelectrocatalyticactivityofCo3O4InternationalLicense.Theimagesorotherthirdpartymaterialinthisanchoredongraphenesheetstowardoxygenreductionreaction.Sci.Rep.3,articleareincludedinthearticle’sCreativeCommonslicense,unlessindicatedotherwise2300(2013).inthecreditline;ifthematerialisnotincludedundertheCreativeCommonslicense,38.Li,Y.,Hasin,P.&Wu,Y.NixCo3-xO4nanowirearraysforelectrocatalyticuserswillneedtoobtainpermissionfromthelicenseholdertoreproducethematerial.oxygenevolution.Adv.Mater.22,1926–1929(2010).Toviewacopyofthislicense,visithttp://creativecommons.org/licenses/by/4.0/39.Faber,M.S.etal.High-performanceelectrocatalysisusingmetalliccobaltpyrite(CoS2)micro-andnanostructures.J.Am.Chem.Soc.136,10053–10061(2014).rTheAuthor(s)20168NATURECOMMUNICATIONS|7:12876|DOI:10.1038/ncomms12876|www.nature.com/naturecommunications
此文档下载收益归作者所有