小学奥数--加法原理乘法原理资料

小学奥数--加法原理乘法原理资料

ID:41544099

大小:103.50 KB

页数:4页

时间:2019-08-27

小学奥数--加法原理乘法原理资料_第1页
小学奥数--加法原理乘法原理资料_第2页
小学奥数--加法原理乘法原理资料_第3页
小学奥数--加法原理乘法原理资料_第4页
资源描述:

《小学奥数--加法原理乘法原理资料》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、加法原理与乘法原理加法原理:完成一件工作共有N类方法。在第一类方法中有m1种不同的方法,在第二类方法中有m2种不同的方法,……,在第N类方法中有mn种不同的方法,那么完成这件工作共有N=m1+m2+m3+…+mn种不同方法。运用加法原理计数,关键在于合理分类,不重不漏。要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。合理分类也是运用加法原理解决问题的难点,不同的问题,分类的标准往往不同,需要积累一定的解题经验。乘法原理:完成一件工作共需N个步骤:完成第一个步骤有m1种

2、方法,完成第二个步骤有m2种方法,…,完成第N个步骤有mn种方法,那么,完成这件工作共有m1×m2×…×mn种方法。运用乘法原理计数,关键在于合理分步。完成这件工作的N个步骤,各个步骤之间是相互联系的,任何一步的一种方法都不能完成此工作,必须连续完成这N步才能完成此工作;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此工作的方法也不同。这两个基本原理是排列和组合的基础,与教材联系紧密(如四下《搭配的规律》),教学时要先通过生活中浅显的实例,如购物问题、行程问题、搭配问题等,帮助孩子理解两个原理,再让孩子学习运用原理解决问题。运用两个原理解决的都是比较复杂的

3、计数问题,在解题时要细心、耐心、有条理地分析问题。计数时要注意区分是分类问题还是分步问题,正确运用两个原理。灵活机动地分层重复使用或综合运用两个原理,可以巧妙解决很多复杂的计数问题。小学阶段只学习两个原理的简单应用。【题目1】:用1角、2角和5角的三种人民币(每种的张数没有限制)组成1元钱,有多少种方法?【解析】:运用加法原理,把组成方法分成三大类:①只取一种人民币组成1元,有3种方法:10张1角;5张2角;2张5角。②取两种人民币组成1元,有5种方法:1张5角和5张1角;一张2角和8张1角;2张2角和6张1角;3张2角和4张1角;4张2角和2张1角。③取三种人民币组成

4、1元,有2种方法:1张5角、1张2角和3张1角的;1张5角、2张2角和1张1角的。所以共有组成方法:3+5+2=10(种)。【题目2】:各数位的数字之和是24的三位数共有多少个?【解析】:一个数各个数位上的数字,最大只能是9,24可分拆为:24=9+9+7;24=9+8+7;24=8+8+8。运用加法原理,把组成的三位数分为三大类:4①由9、9、8三个数字可组成3个三位数:998、989、899;②由9、8、7三个数字可组成6个三位数:987、978、897、879、798、789;③由8、8、8三个数字可组成1个三位数:888。所以组成三位数共有:3+6+1=10(个

5、)。【题目3:提高题】:一把钥匙只能开一把锁,现在有10把钥匙和10把锁全部都搞乱了,最多要试验多少次才能全部配好锁和相应的钥匙?【解析】:要求“最多”多少次配好锁和钥匙,就要从最糟糕的情况开始考虑:第1把钥匙要配到锁,最多要试9次(如果9次配对失败,第10把锁就一定是这把钥匙,不用再试);同理,第2把钥匙最多要试8次;……第9把锁最多试1次,最好一把锁不用试。所以,最多试验次数为:9+8+7……+2+1=45(次)。【题目4】:某人到食堂去买饭菜,食堂里有4种荤菜,3种蔬菜,2种汤。他要各买一样,共有多少种不同的买法?【解析】:运用乘法原理,把买饭菜分为三步走:第一步

6、:选汤有2种方法。第二步:选荤菜有4种方法。每种选汤方法对应的都有4种选荤菜的方法,汤和荤菜共有2个4种,即8种不同的搭配方法。第三步:选蔬菜有3种方法。荤菜和汤有8种不同的搭配方法,每种搭配方法,对应的都有3种选蔬菜的方法与其二次搭配,共有8个3种,即24种不同搭配方法。如下图所示:             所以,共有不同的买法:2×4×3=24(种)。4【题目5】:用数字0,3,8,9能组成多少个数字不重复的三位数?【解析】:运用乘法原理,把组数过程分为三个步骤:第一步:确定三位数百位上数字,有3种选法(最高位不能为0)。第二步:确定十位上数字,有3种选法。从上面四

7、个数字中确定任意一个不为0的数字放在百位上,十位上都会剩下三个数字供选择。因此,对应百位上数字的每种选法,十位上数字都有3种不同的选择方法,两个数字共有3个3种,即9种不同的组成方法。第三步:确定个位上数字,有2种选法。从上面四个数字中去掉百位和十位上数字任意一种组成,个位上都会剩下2个不同的数字供选择。因此,对应百位和十位上数字的任意一种组成方法,个位上都有2种不同的选择方法,三个数字共有9个2种,即18中不同的组成方法。所以,能组成的不重复的三位数的个数为:3×3×2=18(个)。【题目6】:从5幅国画,3幅油画,2幅水彩画中选取两幅

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。