欢迎来到天天文库
浏览记录
ID:41520919
大小:20.21 KB
页数:3页
时间:2019-08-26
《圆周角与圆心角的关系教学反思》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、《圆周角与圆心角的关系》第二课时教学反思 韩亚男《圆周角与圆心角的关系》是在圆的基本概念和性质以及圆心角概念和性质的基础上,对圆周角的性质进行探索,圆周角性质在圆的有关说理、作图、计算中有着广泛的应用,也是学习圆的后续知识的重要预备知识,在教材中起着承上启下的作用.同时,圆周角性质也是说明线段相等,角相等的重要依据之一.本节共分2课时,我讲授的是第2课时。本课时的教学设计设置了五个环节:温故知新——探求新知——知识运用——知识总结——课堂检测。每个环节的设计与展开都以问题的解决为中心,通过创设情境激发学生的求知欲,结合学生的认知特点
2、,教学活动逐渐深入,学生有巩固练习,有总结提高。反思本节课的教学,我认为亮点有三:1、打破教材原有的安排,对知识重新进行了整合。按照课本的编排,第1课时主要研究圆周角和圆心角的关系(圆周角定理),第2课时研究定理的三个推论,并解决一些简单问题。但在实际教学中,我并没有按照教材的安排进行,而是根据学生的认知规律及知识的难易程度,把第二课时中的推论1放在了第一课时完成,在第二课时中根据该班学生的实际学情把重点放在推论2和推论3的得出及其数学运用上,补充了例题、习题,把课本中安排的难度较大、不易理解的以航行为背景的实际问题大胆地砍掉,布置
3、为课后思考题,让个别学有余力的或感兴趣的学生去尝试解决。实践证明这样处理的效果很好。2、温故知新的设计起到了很好的复习回顾与引入新课的作用。温故知新设计了问题串:(1)一条弧所对的圆周角与圆心角有什么关系?(2)同一条弧所对的圆周角有几个?它们之间有什么关系?(3)相等的弧所对的圆周角呢?(4)根据圆周角定理,你认为90°的圆周角所对的弦会不会有什么特别呢?直径所对的圆周角呢?通过设置问题串,层层设疑,在引导学生思考的基础上,既复习旧知识,做好新知识学习的铺垫,同时也不断激活学生思维、生成新问题,引起认知冲突,从而自然引入新课。3、
4、方法总结适时到位。在知识运用一环,设计了2个例题,每个例题完成后都及时地进行了方法总结,避免了学生一听知识都懂,一做题却不知如何下手的问题。例1.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=BD,BD与CD有什么大小关系?为什么?方法总结:一般地,如果题目的已知条件中有直径时,往往作出直径所对的圆周角——直角。例1例2例2.如图,△ABC的顶点均在⊙O上,AB=4,∠C=30°,求⊙O的直径。方法总结:当需要直角时,常常作直径。不足有二:1、生生互动关注不够,主要是因为学生平时的互动表现存在启而不发和动而无果无效的
5、问题及原因,所以对学生的活动没有足够的信心,关于此点需在今后的课堂上努力改进。2、知识总结未能很好地起到预设效果。我的总结是这样的:“通过第二节课《圆的对称性》的学习,同学们知道在同圆或等圆中,根据弦及其所对的圆心角、弧、弦心距之间的关系,实现了圆中这些量之间相等关系的转化,而圆周角定理建立了圆心角与圆周角之间的关系,因此,最终实现了圆中的角(圆周角和圆心角)、线段(弦、弦心距)、弧等量与量之间相等关系的转化,即圆周角、圆心角、弦、弦心距、弧五组量中,只要有一组量相等,那么其余四组量都分别相等,简言之,五组量中,知一得四。”如此总结
6、,能让学生把前后两课的知识都串联起来。本想通过这一总结起到知识升华、画龙点睛的作用,但因为学生的程度较差,所以效果就差了那么一点点。如何改进从而达到应有的效果呢?经过反思,我想应该在总结语之后紧跟着再佐以一道具体题目就完美了,学生的理解就深刻了。总结没起到我所预想的效果是这节课我最遗憾的地方,这也说明备学生仍然不够充分。总之,通过这次全全行动,通过认真地反思,我感觉各方面又进步了许多。只有不断反思,才能不断进步!今后还需进一步努力!
此文档下载收益归作者所有