必修3-第三章《概率》教案

必修3-第三章《概率》教案

ID:41465747

大小:95.50 KB

页数:9页

时间:2019-08-25

必修3-第三章《概率》教案_第1页
必修3-第三章《概率》教案_第2页
必修3-第三章《概率》教案_第3页
必修3-第三章《概率》教案_第4页
必修3-第三章《概率》教案_第5页
资源描述:

《必修3-第三章《概率》教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、§3.1随机事件的概率3.1.1随机事件的概率、3.1.2概率的意义(第1、2课时)1、创设情境:日常生活中,有些问题是很难给予准确无误的回答的。例如,你明天什么时间起床?7:20在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?等等。2、基本概念:(1)必然事件:(2)不可能事件:(3)确定事件:(4)随机事件:(5)频数与频率:3、例题分析:例1判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?(1)“抛一石块,下落”.(2)“在标准大气压下且温度低于0℃时,冰融化”;(3)“某人射击一次,中靶”;(4)“如果a>b,那么a

2、-b>0”;(5)“掷一枚硬币,出现正面”;(6)“导体通电后,发热”;(7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;(8)“某电话机在1分钟内收到2次呼叫”;(9)“没有水份,种子能发芽”;(10)“在常温下,焊锡熔化”.答:例2某射手在同一条件下进行射击,结果如下表所示:射击次数n102050100200500击中靶心次数m8194492178455击中靶心的频率(1)填写表中击中靶心的频率;(2)这个射手射击一次,击中靶心的概率约是什么?小结:概率实际上是频率的科学抽象,求某事件的概率可以通过求该事件的频率而得之。

3、练习:一个地区从某年起几年之内的新生儿数及其中男婴数如下:时间范围1年内2年内3年内4年内新生婴儿数554496071352017190男婴数2883497069948892男婴出生的频率(1)填写表中男婴出生的频率(结果保留到小数点后第3位);(2)这一地区男婴出生的概率约是多少?第9页例3某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为多大?中10环的概率约为多大?例5在一场乒乓球比赛前,裁判员利用抽签器来决定由谁先发球,请用概率的知识解释其

4、公平性。分析:小结:事实上,只能使两个运动员取得先发球权的概率都是0.5的规则都是公平的。4、课堂小结:概率是一门研究现实世界中广泛存在的随机现象的科学,正确理解概率的意义是认识、理解现实生活中有关概率的实例的关键,学习过程中应有意识形成概率意识,并用这种意识来理解现实世界,主动参与对事件发生的概率的感受和探索。5、课堂练习:1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是()A.必然事件B.随机事件C.不可能事件D.无法确定2.下列说法正确的是()A.任一事件的概率总在(0.1)内B.不可能事件的概率不一定为0C.必然事件的概率一定为1D.以上

5、均不对3.下表是某种油菜子在相同条件下的发芽试验结果表,请完成表格并回答题。每批粒数251070130700150020003000发芽的粒数2496011628263913392715发芽的频率(1)完成上面表格:(2)该油菜子发芽的概率约是多少?4.某篮球运动员,在同一条件下进行投篮练习,结果如下表如示。投篮次数100100100100100100100进球次数m75808085838076进球频率(1)计算表中进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?5.生活中,我们经常听到这样的议论:“天气预报说昨天降水概率为90%,结果根本

6、一点雨都没下,天气预报也太不准确了。”学了概率后,你能给出解释吗?第9页3.13概率的基本性质(第3课时)1、创设情境:(1)集合有相等、包含关系,如{1,3}={3,1},{2,4}Í{2,3,4,5}等;(2)在掷骰子试验中,可以定义许多事件如:C1={出现1点},C2={出现2点},C3={出现1点或2点},C4={出现的点数为偶数}……师生共同讨论:观察上例,类比集合与集合的关系、运算,你能发现事件的关系与运算吗?基本概念:(1)事件的包含、并事件、交事件、相等事件见课本P119例题分析:例1一个射手进行一次射击,试判断下列事件哪些是互斥事件

7、?哪些是对立事件?事件A:命中环数大于7环;事件B:命中环数为10环;事件C:命中环数小于6环;事件D:命中环数为6、7、8、9、10环.分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚,互斥事件是指不可能同时发生的两事件,而对立事件是建立在互斥事件的基础上,两个事件中一个不发生,另一个必发生。解:例2抛掷一骰子,观察掷出的点数,设事件A为“出现奇数点”,B为“出现偶数点”,已知P(A)=,P(B)=,求出“出现奇数点或偶数点”.分析:抛掷骰子,事件“出现奇数点”和“出现偶数点”是彼此互斥的,可用运用概率的加法公式求解.解:例3如

8、果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是,取到方块(事件B)的概率是,问

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。