人脸图像处理技术研究—年龄识别

人脸图像处理技术研究—年龄识别

ID:41407347

大小:1.26 MB

页数:16页

时间:2019-08-24

人脸图像处理技术研究—年龄识别_第1页
人脸图像处理技术研究—年龄识别_第2页
人脸图像处理技术研究—年龄识别_第3页
人脸图像处理技术研究—年龄识别_第4页
人脸图像处理技术研究—年龄识别_第5页
资源描述:

《人脸图像处理技术研究—年龄识别》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、人脸图像处理技术研究—年龄识别【摘要】基于人脸图像的生物特征识别研究在近几年来取得了巨大的发展。与其它的生物特征相比,人脸特征具有自然性、不易仿冒性和非强制性等优点,使其在安全监控、身份验证、人机交互、视频检索等方面具有巨大的应用前景。人脸年龄估计的特征提取算法需要提取人脸区域的特征,人脸区域检测是人脸年龄估计的一个重要环节。本文首先介绍了人脸年龄估计的研究背景和国内外研究现状,并提出现阶段该研究所面临的问题。第二章介绍了人脸检测的方法和特征点定位方法,然后使用PCA方法对仿生特征进行数据降维,给出了相关的算法。介绍了bp神经网络,并且

2、以降维后的特征作为神经网络的输入,以图像中人的年龄值作为神经网络的输出,建立神经网络模型,对年龄进行估计。【关键词】年龄估计,特征提取,脸部特征点定位引言1、研究背景随着计算机科学技术的发展,计算机向着智能机器方向发展,网络化和智能化已经成为信息领域的发展方向。在此基础上,生物特征识别技术得到了快速的发展。所谓生物特征识别是指,利用人体的生理特征和行为特征,通过计算机与各种传感器和生物统计原理等高科技手段密切结合,进行个人身份的认证。人脸是人类最重要的生物特征之一,在辨别身份和传递感情方面有着重要的作用。人脸图像包含了大量的信息,比如身

3、份、性别、年龄、人种、表情等。生物特征识别技术与传统的身份识别方法相比具有更明显的优势,由于每个个体具有各自独特的生理或行为特征,且每个个体自身拥有唯一、稳定、不易遗忘和随时随地可用的生物特征,因此,生物征识别技术具有更高的安全性、可靠性和便捷性。生物特征识别技术将会很大程度改变人们的生活,逐渐成为一种更加方便、可靠、安全的大众化身份验证手段。基于人脸图像的年龄估计主要解决如下的一些问题:根据人脸图像估计出人脸的准确年龄。随着越来越多的人对此类问题的关注,引起了一些国家的重视并出台了相应的法律法规,如:2008年日本规定了相关的卷烟供应

4、商必须在自动售货机上安装可以进行年龄识别的装置,用来阻止未成年人购买香烟。可以看出基于特定人脸图像年龄估计技术具有广泛的商用前景。2、研究意义自动年龄估计有更广泛的应用前景,主要包括:(1)可推动人脸识别技术的发展,在人脸年龄识别的研究中,人脸样貌会随着年龄发生变化,导致对象当前面貌与图像库中的图像之间出现差异,从而引起识别率的下降。为减少这种变化所带来的影响,可应用多年龄人脸图像重构方法来模拟年龄变化的效果,提高人脸的识别率,实现人脸面貌的准确识别和预测。(2)可直接应用在信用卡、驾驶证、护照、身份证等个人身份证明中,进行自动个人身份

5、辩识。由于身份证、护照以及许多其他证件上都有证件所有者的正面免冠照片,虽然证件持有者的样貌已经与照片有一定的差距,但是在检验时,仍能较为准确的识别出对象的身份,减少了人工干预,不需要经常更新照片。此外,还可以有效地打击假姓名、假身份证等违法犯罪行为。(3)可用于信息采集与分析,例如广告调查等领域,我们可以测定出浏览某个特定广告花费最多时间的年龄群并针对该年龄群设计广告方案;商家对购物中心的顾客进行年龄层次的分析统计,根据各自需求而针对不同的顾客群制定有利于商家自己的经营策略。一、国内外研究现状1、国内研究现状国内较少人从事人脸年龄估计的

6、研究,文献[1]研究了基于BoostingRBF神经网络的人脸年龄估计方法,先用非负矩阵分解方法提取人脸特征,然后通过RBF神经网络确定一个人脸图像及其相符年龄之间的估计函数。为提高神经网络的泛化能力和故障诊断的准确性,利用Boosting方法构造了一个基于神经网络的函数序列,将它们组合成一个加强的估计函数,最后进行年龄估计。文献[2]提出一种基于人工免疫识别系统的年龄估计方法,先利用AAM方法自动提取用于年龄估计的人脸特征,之后利用人工免疫识别系统方法进行人脸图的年龄估计。2、国外研究现状国际上,Young和Niels[3]可能是最早

7、提出年龄估计的人。他们早在1994年就提出通过人脸图像进行年龄估计。他们的工作相对较为简单。他们把年龄粗略地分成:老年人、年轻人和小孩三种。Hayashi等[4]研究了基于Hough变换的皱纹纹理和人脸图像肤色分析的年龄和性别识别方法。Lanitis等人[5]提出一种基于脸部外观的统计模型。他们比较了KNN、MLP、SOM分类器的性能,并且认为机器几乎可以和人一样估计出人的年龄。Nakano等人[6]提出利用脖子和脸部皱纹纹理的边缘信息来进行年龄估计。Zhou等人[7]提出用Boosing的方法做为回归方法进行年龄的估计,并用实验表明该

8、方法比基于SVMs的方法还要好。Geng等人[8]提出了衰老模式子空间的方法,通过学习一些代表性的子空间来建模衰老模式,这种衰老模式是用一系列的个人衰老图像定义出来的。对于未知人脸图像,通过用子空间投影的方

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。