欢迎来到天天文库
浏览记录
ID:41341955
大小:766.51 KB
页数:18页
时间:2019-08-22
《树叶分类——数字图像处理在树叶识别中的应用》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、研究报告:数字图像处理在树叶识别中的应用数字图像处理研究报告数字图像处理在树叶识别中的应用侯杰:土木系侯晓鹏:林科院苏东川:航院张伟:精仪指导教师:马慧敏教授日期:2007.12.30-II-研究报告:数字图像处理在树叶识别中的应用数字图像处理在树叶识别中的应用一、课题意义及背景1课题背景植物的识别与分类对于区分植物种类,探索植物间的亲缘关系,阐明植物系统的进化规律具有重要意义。因此植物分类学是植物科学乃至整个生命科学的基础学科。然而,由于学科发展和社会等原因,全世界范围内目前从事经典分类(即传统的形
2、态分类)的人数急剧下降,且呈现出明显的老龄化趋势,后继乏人,分类学已经成为一个“濒危学科”(Buyck,1999)。这不仅对于植物分类学本身,而且对整个植物科学和国民经济的发展带来重大的不利影响。目前植物识别和分类主要由人工完成。然而地球上仅为人所知的有花植物就有大约25万种,面对如此庞大的植物世界,任何一个植物学家都不可能知道所有的物种和名称,这就给进一步的研究带来了困难。在信息化的今天,我们提出的一种解决方案是:建立计算机化的植物识别系统,即利用计算机及相关技术对植物进行识别和管理[1]。2课题意
3、义[2-3](1)人工进行植物叶形的分类难度很大。这种传统的判别方法要求操作者具有丰富的分类学知识和长期的实践经验,才能开展工作。要做到准确和快速地识别手中的植物是非常困难。并且相应人才极为短缺。(2)仅为人所知的有花植物就有大约25万种,面对如此庞大的植物世界,任何一个植物学家都不可能知道所有的物种和名称。建立植物识别系统和数据库十分必要。(3)植物学研究人员在野外考察时,时常需要获取植物叶片面积等参数。(4)叶子面积大小对植物的生长发育、作物产量以及栽培管理都具有十分重要的意义。-17-研究报告:
4、数字图像处理在树叶识别中的应用因此,基于计算机图像处理识别技术的树叶图像识别技术对于植物学,农业科学等都具有重大意义。二、相关理论综述1图像预处理(1)边缘检测[4]图像的边缘是指图像局部亮度变化最显著的部分,即在灰度级上发生急剧变化的区域。从空域角度看,二维图像上的边缘相邻像素灰度从某一个值跳变到另一个差异较大的值。其灰度变化曲线呈现奇异信号波形:阶跃信号或屋脊形脉冲信号。图像边缘信息是图像的重要特征,也是计算机视觉和图像识别的基础。对树叶的边缘进行检测是树叶识别的基础,从二维数字图像上可得到的所有
5、树叶的特征都基于其轮廓信息的。因此对树叶边缘信息检测情况的好坏直接影响到最终的处理结果。对于边缘的检测常常借助于空域微分算子进行,通过将其模板与图像卷积完成。两个具有不同灰度值的相邻区域之间总存在灰度边缘。灰度边缘是灰度值不连续(或突变)的结果,这种不连续常可利用求一阶和二阶导数方便地检测到。已有的边缘检测方法,主要有一次微分(Sobel算子、Roberts算子等)、二次微分(Laplace算子等)和模板操作(Prewitt算子、Kirsch算子、Robinson算子等)等。Sobel算子:Sobel
6、边缘算子的掩模模板是两个3×3的卷积核。Sobel边缘算子强调中心像素的4-邻域对其的影响,而削弱4个对角近邻像素对其作用。它是有方向性的,在水平方向和垂直方向上形成最强烈的边缘。-17-研究报告:数字图像处理在树叶识别中的应用-101-202-101Gx121000-1-2-1GyRoberts算子:Robert边缘算子是一种局部差分算子,采用两个2×2的掩模模板对图像的边缘进行检测。100-10-110GxGyPrewitt算子:Prewitt算子与Sobel算子的方程一样,只是常量c=1。-10
7、1-101-101Gx111-17-研究报告:数字图像处理在树叶识别中的应用000-1-1-1GyGauss-Laplace算子:Laplace算子是二阶微分算子,具有各项同性,只需要一个卷积核进行计算即可。Laplace算子精度高,但是同时对噪声更敏感,因此在检测之前一般先进行平滑,把高斯平滑滤波器和Laplace锐化滤波器结合起来形成Gauss-Laplace算子。正因为如此,本文首选该算子预处理图像。常用的Gauss-Laplace算子是5×5模板,如下图所示。-2-4-4-4-2-4080-4
8、-48248-4-4080-4-2-4-4-4-2Gauss-Laplace算子(2)图像平滑在对图像进行边缘检测以及后续的处理时,由于噪声的影响会使得处理结果不够准确。噪声点和周围像素点灰度值差异较大,空间频率比较高,因此可以利用空间滤波的方法抑制图像的高频分量,使噪声点的影响减小,即平滑处理。图像平滑一般采用的方法有均值滤波和中值滤波两种。均值滤波:对模板内的所有像素点的灰度值取均值或加权均值。中值滤波:对模板内的像素点的灰度值排序,取中间值作为返回
此文档下载收益归作者所有