欢迎来到天天文库
浏览记录
ID:41267881
大小:169.68 KB
页数:9页
时间:2019-08-20
《小学奥数所有考点、知识点整理与总复习》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、学而思小学奥数知识点梳理前言小学奥数知识点梳理,对于学而思的小学奥数大纲建设尤其必要,不过,对于知识点的概括很可能出现以偏概全挂一漏万的现象,为此,本人参考了单尊主编的《小学数学奥林匹克》、1.估算求某式的整数部分:扩缩法2.比较大小①通分a.通分母b.通分子②跟“中介”比③利用倒数性质若,则c>b>a.。形如:,则。3.定义新运算4.特殊数列求和运用相关公式:①②③④⑤⑥⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n一、数论1.奇偶性问题奇奇=偶奇×奇=奇奇偶=奇奇×偶=偶偶偶=
2、偶偶×偶=偶1.位值原则形如:=100a+10b+c2.数的整除特征:整除数特征2末尾是0、2、4、6、83各数位上数字的和是3的倍数5末尾是0或59各数位上数字的和是9的倍数11奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数4和25末两位数是4(或25)的倍数8和125末三位数是8(或125)的倍数7、11、13末三位数与前几位数的差是7(或11或13)的倍数3.整除性质①如果c
3、a、c
4、b,那么c
5、(ab)。②如果bc
6、a,那么b
7、a,c
8、a。③如果b
9、a,c
10、a,且(b,c)=1,那么
11、bc
12、a。④如果c
13、b,b
14、a,那么c
15、a.⑤a个连续自然数中必恰有一个数能被a整除。4.带余除法一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r<b,使得a=b×q+r当r=0时,我们称a能被b整除。当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。用带余数除式又可以表示为a÷b=q……r,0≤r<ba=b×q+r6.唯一分解定理任何一个大于1的自然数n都可以写成质数的连乘积,即n=p1×p2×...×pk7.约数个数与约数和定
16、理设自然数n的质因子分解式如n=p1×p2×...×pk那么:n的约数个数:d(n)=(a1+1)(a2+1)....(ak+1)n的所有约数和:(1+P1+P1+…p1)(1+P2+P2+…p2)…(1+Pk+Pk+…pk)8.同余定理①同余定义:若两个整数a,b被自然数m除有相同的余数,那么称a,b对于模m同余,用式子表示为a≡b(modm)②若两个数a,b除以同一个数c得到的余数相同,则a,b的差一定能被c整除。③两数的和除以m的余数等于这两个数分别除以m的余数和。④两数的差除以m的余数等于这两
17、个数分别除以m的余数差。⑤两数的积除以m的余数等于这两个数分别除以m的余数积。9.完全平方数性质①平方差:A-B=(A+B)(A-B),其中我们还得注意A+B,A-B同奇偶性。②约数:约数个数为奇数个的是完全平方数。约数个数为3的是质数的平方。③质因数分解:把数字分解,使他满足积是平方数。④平方和。10.孙子定理(中国剩余定理)11.辗转相除法12.数论解题的常用方法:枚举、归纳、反证、构造、配对、估计一、几何图形1.平面图形⑴多边形的内角和N边形的内角和=(N-2)×180°⑵等积变形(位移、割补)
18、①三角形内等底等高的三角形②平行线内等底等高的三角形③公共部分的传递性④极值原理(变与不变)⑶三角形面积与底的正比关系S1︰S2=a︰b;S1︰S2=S4︰S3或者S1×S3=S2×S4⑷相似三角形性质(份数、比例)①;S1︰S2=a2︰A2②S1︰S3︰S2︰S4=a2︰b2︰ab︰ab;S=(a+b)2⑸燕尾定理S△ABG:S△AGC=S△BGE:S△GEC=BE:EC;S△BGA:S△BGC=S△AGF:S△GFC=AF:FC;S△AGC:S△BCG=S△ADG:S△DGB=AD:DB;⑹差不变
19、原理知5-2=3,则圆点比方点多3。⑺隐含条件的等价代换例如弦图中长短边长的关系。⑻组合图形的思考方法①化整为零②先补后去③正反结合1.立体图形⑴规则立体图形的表面积和体积公式⑵不规则立体图形的表面积整体观照法⑶体积的等积变形①水中浸放物体:V升水=V物②测啤酒瓶容积:V=V空气+V水⑷三视图与展开图最短线路与展开图形状问题⑸染色问题几面染色的块数与“芯”、棱长、顶点、面数的关系。一、典型应用题1.植树问题①开放型与封闭型②间隔与株数的关系2.方阵问题外层边长数-2=内层边长数(外层边长数-1)×4=
20、外周长数外层边长数2-中空边长数2=实面积数1.列车过桥问题①车长+桥长=速度×时间②车长甲+车长乙=速度和×相遇时间③车长甲+车长乙=速度差×追及时间列车与人或骑车人或另一列车上的司机的相遇及追及问题车长=速度和×相遇时间车长=速度差×追及时间2.年龄问题差不变原理3.鸡兔同笼假设法的解题思想4.牛吃草问题原有草量=(牛吃速度-草长速度)×时间5.平均数问题6.盈亏问题分析差量关系7.和差问题8.和倍问题9.差倍问题10.逆推问题还原法,从结果入手11
此文档下载收益归作者所有