《次方程组的应用》PPT课件

《次方程组的应用》PPT课件

ID:41231483

大小:754.01 KB

页数:22页

时间:2019-08-19

《次方程组的应用》PPT课件_第1页
《次方程组的应用》PPT课件_第2页
《次方程组的应用》PPT课件_第3页
《次方程组的应用》PPT课件_第4页
《次方程组的应用》PPT课件_第5页
资源描述:

《《次方程组的应用》PPT课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、实践与探索(二元一次方程组的应用)一、行程问题基本数量关系路程=时间×速度时间=路程/速度速度=路程/时间同时相向而行路程=时间×速度之和同时同向而行路程=时间×速度之差船在顺水中的速度=船在静水中的速度+水流的速度船在逆水中的速度=船在静水中的速度-水流的速度ABSV1V2S=T(+)V1V2AB同时同地同向在同一跑道进行比赛当男生第一次赶上女生时男生跑的路程-女生跑的路程=跑道的周长乙甲St同时异地追及问题乙的路程-甲的路程=甲乙之间的距离T(-)=sV乙甲V例1.某站有甲、乙两辆汽车,若甲车先出发1h后乙车出发,则乙车出发后5h追上甲车;若甲车先开出30km后乙车出发,则乙车出发4h

2、后乙车所走的路程比甲车所走路程多10km.求两车速度.若甲车先出发1h后乙车出发,则乙车出发后5h追上甲车解:设甲乙两车的速度分别为xKm/h、yKm/h根据题意,得x5x5y5y=6x若甲车先开出30km后乙车出发,则乙车出发4h后乙车所走的路程比甲车所走路程多10km.30km4x4y4y=4x+40解之得X=50Y=6o答:甲乙两车的速度分别为50km、60km水流方向轮船航向船在逆水中的速度=船在静水中的速度-水流的速度水流方向轮船航向船在顺水中的速度=船在静水中的速度+水流的速度例5.已知A、B两码头之间的距离为240km,一艏船航行于A、B两码头之间,顺流航行需4小时;逆流航行

3、时需6小时,求船在静水中的速度及水流的速度.解:设船在静水中的速度及水流的速度分别为xkm/h、ykm/h,根据题意,得4(x+y)=2406(x-y)=240解之得X=50Y=10答:船在静水中的速度及水流的速度分别为50km/h、10km/h二、工程问题工作量=工作时间×工作效率工作效率=工作量/工作时间、工作时间=工作量/工作效率例1.某工人原计划在限定时间内加工一批零件.如果每小时加工10个零件,就可以超额完成3个;如果每小时加工11个零件就可以提前1h完成.问这批零件有多少个?按原计划需多少小时完成?解:设这批零件有x个,按原计划需y小时完成,根据题意,得10y=x+311(y-

4、1)=x解之得X=77Y=8答:这批零件有77个,按计划需8小时完成三、商品经济问题本息和=本金+利息利息=本金×年利率×期数×利息税利息所得税=利息金额×20℅例1李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税后可得利息43.92元,已知这两种储蓄的年利率的和为3.24℅,问这两种储蓄的年利率各是几分之几?(注:公民应交利息所得税=利息金额×20℅)解:设这两种储蓄的年利率分别是x、y,根据题意得x+y=3.24%2000x80%+1000y80%=43.92解之得x=2.25%y=0.99%答:这两种储蓄的年利蓄分别为2.25%、0.09%(3)如果王老

5、师两次购物合计820元,他实际付款共计728元,且第一次购物的货款少于第二次购物的,求两次购物各多少元?其中500元部分给予九折优惠,超过500部分给予八折优惠500元或等于500元九折优惠低于500元但不低于200元不予优惠少于200元优惠方法一次性购物解:设第一次购物的货款为x元,第二次购物的货款为y元①当x<200,则,y≥500,由题意得x+y=820x+0.8y+50=728解得x=110Y=710②当x小于500元但不小于200元时,y≥500,由题意得x+y=8200.9x+0.8y+50=728解得X=220Y=600③当均小于500元但不小于200元时,且,由题意得综上所

6、述,两次购物的分别为110元、710元或220元、600元x+y=8200.9x+0.9y=728此方程组无解.四、配套问题(一)配套与人员分配问题例1.某车间22名工人生产螺钉与螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?一个螺钉配两个螺母螺钉数:螺母数=1:2解:设分配名x工人生产螺钉,y名工人生产螺母,则一天生产的螺钉数为1200x个,生产的螺母数为2000y个.所以为了使每天生产的产品刚好配套,应安排10人生产螺钉,12人生产螺母根据题意,得x+y=222×1200x=20

7、00y解得x=10Y=12五、配套与物质分配问题例1.用白钢铁皮做头,每张铁皮可做盒身25个,或做盒底40个,一个盒身与两个盒底配成一套,现有36张白铁皮,用多少张做盒身,多少张做盒底,可使盒身与盒底正好配套?解:设用x张白铁皮做盒身,用y张制盒底,则共制盒身25x个,共制盒底40y个.所以用16张制盒身,20张制盒底正好使盒身与盒底配套根据题意,得x+y=362×25x=40y解得X=16Y=20例3.某车间每天能生产

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。