欢迎来到天天文库
浏览记录
ID:41217634
大小:199.50 KB
页数:6页
时间:2019-08-19
《中考数学二轮复习 专题二 解答重难点题型突破 题型二 解直角三角形的实际应用试题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、题型二 解直角三角形的实际应用1.(xx·常德)如图①,②分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离.(精确到0.01米)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)2.(xx·海南)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固
2、,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1∶1(即DB∶EB=1∶1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)3.(xx·广元)如图,某煤矿因不按规定操作发生瓦斯爆炸,救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A,B两个探测点探测到地下C处有生命迹象.已知A,B两点相距8米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度(结果保留根号).4.(xx
3、·呼和浩特改编)如图,地面上小山的两侧有A,B两地,为了测量A,B两地的距离,让一热气球从小山西侧A地出发沿与AB成30°角的方向,以每分钟40m的速度直线飞行,10分钟后到达C处,此时热气球上的人测得CB与AB成70°角,请你用测得的数据求A,B两地的距离AB长.(结果精确到0.1米,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,≈1.73,≈1.41)5.(xx·兰州)“兰州中山桥“位于兰州滨河路中段白塔山下、金城关前,是黄河上第一座真正意义上的桥梁,有“天下黄河第一桥”之美誉
4、.它像一部史诗,记载着兰州古往今来历史的变迁.桥上飞架了5座等高的弧形钢架拱桥.小芸和小刚分别在桥面上的A,B两处,准备测量其中一座弧形钢架拱梁顶部C处到桥面的距离,AB=20m,小芸在A处测得∠CAB=36°,小刚在B处测得∠CBA=43°,求弧形钢架拱梁顶部C处到桥面的距离.(结果精确到0.1m)(参考数据sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)6.(xx·聊城)耸立在临清市城北大运河东岸的舍利宝塔,是“运河四
5、大名塔”之一(如图①).数学兴趣小组的小亮同学在塔上观景点P处,利用测角仪测得运河两岸上的A,B两点的俯角分别为17.9°,22°,并测得塔底点C到点B的距离为142米(A、B、C在同一直线上,如图②),求运河两岸上的A、B两点的距离(精确到1米).(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin17.9°≈0.31,cos17.9°≈0.95,tan17.9°≈0.32)7.(xx·随州)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图
6、②是从图①引出的平面图.假设你站在A处测得塔杆顶端C的仰角是55°,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BG⊥HG,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)8.(xx·乌鲁木齐)一艘渔船位于港口A的北偏东60°方向,距离港口20海里B处,它沿北偏西37°方
7、向航行至C处突然出现故障,在C处等待救援,B,C之间的距离为10海里,救援艇从港口A出发20分钟到达C处,求救援艇的航行速度.(sin37°≈0.6,cos37°≈0.8,≈1.732,结果取整数)题型二 解直角三角形的实际应用1.解:如解图,延长FE交CB的延长线于M,过A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC·tan75°≈0.60×3.732=2.2392米,∴GM=AB=2.2392米,在Rt△AGF中,∵∠FAG=∠FHE=60°,sin∠FAG=,∴sin60°==,∴FG≈2
8、.17米,∴DM=FG+GM-DF≈3.06米.答:篮框D到地面的距离是3.06米.2.解:设BC=x米,在Rt△ABC中,∠CAB=180°-∠EAC=50°,AB=≈==x,在Rt△EBD中,∵i=DB∶EB=1∶1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+x,解得x=12,即BC=12米,答:水坝原来的高度约为12米.3.解
此文档下载收益归作者所有