高聚物纳米复合材料技术进展及发展前景

高聚物纳米复合材料技术进展及发展前景

ID:41205625

大小:19.00 KB

页数:5页

时间:2019-08-18

高聚物纳米复合材料技术进展及发展前景_第1页
高聚物纳米复合材料技术进展及发展前景_第2页
高聚物纳米复合材料技术进展及发展前景_第3页
高聚物纳米复合材料技术进展及发展前景_第4页
高聚物纳米复合材料技术进展及发展前景_第5页
资源描述:

《高聚物纳米复合材料技术进展及发展前景》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、高聚物/纳米复合材料技术进展及发展前景如今在材料领域,复合材料有很大的开发潜力,对人们的生活对社会的进步有很大作用,只是价格昂贵,还不能应用特别广泛。下面我来讨论一下高聚物纳米复合材料。纳米材料是指材料显微结构中至少有一相的一维尺度在100nm以内的材料。纳米材料由于平均粒径微小、表面原子多、比表面积大、表面能高,因而其性质既不同于单个原子、分子,又不同于普通的颗粒材料,显示出独特的小尺寸效应、表面效应等特性,具有许多常规材料不可能具有的性能。纳米材料由于其超凡的特性,引起了人们越来越广泛的关注,不少学者认为纳米粒子将是21世纪最有前途的材料之一,纳米技术将成为21世纪的主导技术。  

2、  一、纳米材料的特性1、尺寸效应   当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或投射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒的颗粒表面附近原子密度减小,导致声、光电、磁学、热学、力学等特性呈现出新的小尺寸效应。纳米微粒的小尺寸效应使其具有独特的物理化学性能,从而拓宽了材料的应用范围。如当颗粒的粒径降到纳米级时,材料的磁性就会发生很大变化,如一般铁的矫顽力约为80A/m,而直径小于20nm的铁,其矫顽力却增加了1000倍,可用于制造磁卡.若将纳米粒子添加到聚合物中,不但可以全面改善聚合物的力学性能,甚至还可以赋予材料新性能。2、表

3、面效应   一般而言,随着微粒尺寸的减小,微粒中表面原子与原子总数之比将会增加,表面积也将会增大,从而引起材料性能的变化,这就是纳米粒子的表面效应。表1列出了纳米微粒尺寸与表面原子数的关系。纳米微粒尺寸d(nm)   包含总原子         表面原子所占比例(%)10                     3×104               204                      4×103               402                      2.5×102             801                      30  

4、                 99   从表1中可以看出,随着纳米粒子粒径的减小,表面原子所占比例急剧增加。当粒径为1nm时,纳米材料几乎全部由单层表面原子组成。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其它原子结合。若将纳米粒子添加到高聚物中,这些具有不饱和性质的表面原子就很容易同高聚物分子链段发生物理化学作用。3、量子隧道效应   微观粒子贯穿势垒的能力称为隧道效应。纳米粒子的磁化强度等也具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,这称为纳米粒子的宏观量子隧道效应。它的研究对基础研究及实际应用,如导电、导磁高聚物、微波吸

5、收高聚物等,都具有重要意义。二、高聚物/纳米复合材料的技术进展   对于高聚物/纳米复合材料的研究十分广泛,按纳米粒子种类的不同可把高聚物/纳米复合材料分为以下几类:1、高聚物/粘土纳米复合材料   由于层状无机物如粘土、云母、V2O5、MoO3、层状金属盐等在一定驱动力作用下能碎裂成纳米尺寸的结构微区,其片层间距一般为纳米级,可容纳单体和聚合物分子;它不仅可让聚合物嵌入夹层,形成“嵌入纳米复合材料”,而且可使片层均匀分散于聚合物中形成“层离纳米复合材料”。其中粘土易与有机阳离子发生离子交换反应,具有亲油性甚至可引入与聚合物发生反应的官能团来提高两相粘结,因而研究较多,应用也较广。其制

6、备的技术方式有插层法和剥离法,插层法是预先对粘土片层间进行插层处理后,制成“嵌入纳米复合材料”,而剥离法则是采用一些手段对粘土片层直接进行剥离,形成“层离纳米复合材料”。插层法研究工作比较成熟,应用也较多.2、高聚物/刚性纳米粒子复合材料    用刚性纳米粒子对力学性能有一定脆性的聚合物增韧是改善其力学性能的另一种可行性方法。随着无机粒子微细化技术和粒子表面处理技术的发展,特别是近年来纳米级无机粒子的出现,塑料的增韧改性彻底冲破了以往在塑料中加入橡胶类弹性体的做法,而弹性体韧性往往是以牺牲材料宝贵的刚性、尺寸稳定性、耐热性为代价的。   从复合材料的观点出发,若粒子刚硬且与基体树脂结合

7、良好,刚性无机粒子也能承受拉伸应力,起到增韧增强作用。对于超微无机粒子增韧改性机理一般认为:(1)刚性无机粒子的存在产生应力集中效应,易引发周围树脂产生微开裂,吸收一定的变形功。(2)刚性粒子的存在使基体树脂裂纹扩展受阻和钝化,最终终止裂纹不致发展为破坏性开裂。(3)随着填料的微细化,粒子的比表面积增大,因而填料与基体接触面积增大,材料受冲击时,由于刚性纳米粒子与基体树脂的泊松比不同,会产生更多的微开裂,吸收更多的冲击能并阻止材料的断裂。但若填

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。