铁路旅客流量预测

铁路旅客流量预测

ID:41201175

大小:879.56 KB

页数:18页

时间:2019-08-18

铁路旅客流量预测_第1页
铁路旅客流量预测_第2页
铁路旅客流量预测_第3页
铁路旅客流量预测_第4页
铁路旅客流量预测_第5页
资源描述:

《铁路旅客流量预测》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、作者:杨润泽邢航杨云天摘要了解和预测铁路客流量对于铁路部门而言是实现利润最大化和保证市场竞争力的重要环节,本文通过对某铁路公司至2015年一月至2016年3月的客流情况进行研究分析,得出了铁路客流量的一般规律并构建了良好的客流量预测模型,借此实现对未来两周客流量的预测以及对车辆资源分配方案的优化.问题一:根据旅客列车梯形密度表中包含的大量数据,利用图表分析法我们绘制了十二张包含饼图、折线图、散点图等多种形式的图表,这在一定程度上帮助我们很好地实现了客流规律的可视化展现.通过这些图表我们分析研究了不同种客运列车的优劣势、客运量的峰值规律以及站

2、点与客运量的相关性,总结出了客流量的一般规律.问题二:我们针对附件一所提供的大量数据进行了分类整理,将数据按照控制变量法的原则大致分为三类,即考察车站、车次、时间段三个变量对于客流量的影响.在对原始数据进行研究分析后,我们认为车站对于客流量的影响最为显著,于是我们将车站这个因素选定为了主要变量,然后从这个主要变量着手,我们基于MATLAB平台构建程序,程序的核心思想是通过对系统行为特征指标建立一组相互关联的灰色预测模型,预测系统中众多变量间的相互协调关系的变化,这种模型能够帮助我们很好地挖掘和利用原始数据,同时我们参考了在问题一中所得出的客

3、流量的一般规律,最终采用累减生成的放松得到了一组灰色序列以弱化数据的随机性和预测未来客流量.当然,我们也采用了残差修正的衡量方法来对模型和预测结果进行了完善和校准.问题三:为了求得铁路车辆资源配置方案的最优解,一方面考虑到问题二中对于未来两周客流量的预测,另一方面为了实现两个基本假设中对于客座率达到75%利润最大的假设,我们决定采用模拟退火算法来对结果进行优化,这可以帮助我们在减少算法耗时的同时得到一个符合生活实际的最优解.一、问题重述铁路部门为保持市场竞争力,实现利润最大化,需要了解日常铁路客运流量、淡旺季变动指数、冷热门线路.其中,为了

4、准确把握市场,需要对客流进行充分的了解和预测.铁路客流量受多种因素影响.作者:杨云天邢航杨润泽作者:杨润泽邢航杨云天本题目是针对某铁路公司的ZD190(站)至ZD111(站)区段的客运专线在2015年1月至2016年3月的客运情况并综合考虑区段各车站里程、区段各站点气象等现实因素来研究客流量规律并建立对应的预测模型以实现对未来客流量的预测以及对铁路车辆资源配置的优化.我们主要考虑一下问题:(1)根据附件1,通过对大量数据进行分析,按照车次、时段(小时)、车站、区间(两个车站之间)等条件了解分析铁路客流规律.(2)结合问题1中所得出的客流规律

5、及相关因素的影响,构建客流量预测模型,并预测未来两周的客流量.(3)具体到D02~D19车次的客流情况,结合问题2中所构建的预测模型,优化铁路车辆资源配置及车站停靠方案.二、基本假设(1)假设天气因素不影响客流量.(2)假设客座率为百分之七十五时客运公司利润最高.三、符号说明符号说明A原始数列F预测数列B累加数列i,j,k,l,p,s,t变量Cancha残差Xishu系数Wucha误差作者:杨云天邢航杨润泽作者:杨润泽邢航杨云天四、问题分析对铁路客流量的了解、预测以及对现行铁路系统的优化,这三个问题一脉相承,我们认为,首先需要对大量数据进行

6、整理分析,理清脉络,在实现市场竞争力最强、利润最大化的目标下,考虑多种相关因素以建立预测模型和制定优化方案.对于问题一,我们在对EXCEL表中的旅客列车梯度密度表所给出的数据进行了选择、分类,有选择的控制变量后得到了多组针对性更明显的数据以便发现客流规律.例如,按照车型不同(K快速列车,G高速动车-高铁,D动车,T特快,Z直达特快)我们分析了节假日、平时、周末的客流量差异.同时,我们将这些数据以饼图、折线图、散点图或图表等多种多样的形式呈现出来,使客流规律更加突显,实现了分析结果的可视化展现.当然,鉴于数据繁多且较为复杂,我们又对所得出的规

7、律进行了一些残差修正(建立修正模型)以此提高所得客流规律的精准性.对于问题二,我们在认真分析了第一问中得出的客流规律以后,考虑到铁路客流量问题中一部分信息是已知的,另一部分是未知的,且系统内各部分因素间关系具有不确定性这些特点,我们建立了一个灰色系统预测模型,通过一些基本假设的建立来简化现实铁路系统中较为复杂的各种情况,通过鉴别节假日、周末、平时的不同车次、时段、车站、区间之间发展趋势的相异程度综合考虑各种如各车站里程、区段各站点气象等现实条件的影响,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,以此来预测未来两

8、周的客流量.第二问的思维过程可用流程图表示,如图1所示.作者:杨云天邢航杨润泽作者:杨润泽邢航杨云天图1铁路旅客预测模型分析思路有了问题二中我们所建立的铁路客流量灰色系统预测模型

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。