资源描述:
《相遇问题教案曾昭钧》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、小学四年级数学相遇问题教案扎佐镇中心小学:曾昭钧 教学目的: 1.理解相遇问题中速度、时间、路程这三个数量间的相依关系,以及"相向而行"、"相遇"等术语的含义。 2.能根据相遇问题的题意用线段图分析数量关系,并说出解题步骤。 3.能正确解答相遇问题中求路程的应用题。 4.在培养学生逻辑思维能力的同时注重培养学生的自我探究和创造精神。教学重点: 相遇问题中数量关系的理解和解题思路的分析。教学难点:理解相遇问题中速度和、相遇时间和总路程之间的关系。教学准备: 微机及配套大屏幕、投影仪、投影片。课时:2个课时 教学过程:一、展示设疑(一)复习旧知识(投影片)
2、 1.小华每分钟走65米,走了4分钟,一共走了多少米?(65×4=260米) 提问:为什么这样列式?谁会用一个数量关系式表示?(板书:速度×时间=路程) 2.小明每分钟走70米,走了4分钟,?(由学生补充问题再列式计算) [评析:旧知的再现,针对性强,抓住与新知密切相关的速度、时间、路程的数量关系,为学习新知识作了适当的铺垫。](二)引人新课题 我们以前学习的都是一个人或一个物体运动的情况,如果是两个人或两个物体同时相对运动将会出现什么情况呢?这就是我们今天要学习的应用题。(板书课题:应用题)二、引导思疑 1.创设动态情境,准确理解题意。. 微机屏幕
3、显示准备题:小华家距离小明家390米,两人同时从家里出发,向对方走去。小华每分走60米,小明每分走70米。师:请同学们看屏幕,小华、小明是怎样走的?结果会怎样?(屏幕显示小华、小明走,让学生记下出发的时间、地点、方向,记下两人相遇时的时间。小华走的路程用蓝色表示,小明走过程的路程用红色表示) 学生观察后提问:有几个人在运动?出发时间怎样?从哪里出发?出发后方向怎样?结果怎样? 板书:人:两个时间:同时地点:两地 方向:相向(相对)结果:相遇 2.观察、思考、分析、填表。 教师利用微机逐分逐分地演示两人走的时间与路程变化情况,让学生一边观察一边思考,完成
4、下表.根据以上微机的演示让学生填写下面他们两人走的时间和路程的变化情况表。 走的时间小华走的路程小明走的路程两人所走的路程现在两人的距离1分60米70米 2分 3分 填完上表后让学生讨论: ①出发3分钟后,两人之间的距离变成了多少? ②两人所走的路程的和与两家的距离有什么关系? [通过微机演示让学生感知相遇问题的结构特点,然后通过列表、讨论、分析每经过1分、2分、3分两人之间的距离变化,从而准确理解到:相遇时两人所走的路程的和就是两家的距离这一重要的数量关系。] 三、引思解疑 l.出示例5:小强和小丽同时从自己家里走向学校。小强
5、每分走65米,小丽每分走70米,经过4分,两人在校门口相遇。他们两家相距多少米? 2.理解题意,画出线段图。 ①让学生说说小强和小丽是怎样运动的?题中的已知条件和问题分别是什么? ②根据学生的回答,微机屏幕显示线段图(标出运动方向、有关数据及问题)。 ③让学生根据线段图复述题意,同时想象两人同时从家里走向学校的过程。 (3)分析数量关系及解题方法。 问:怎样求两家的距离? 启发学生说出两种解法: ①求两人各自的路程,再加起来。 64×4+70×4 ②求每分两人所走的路程和,再求4分两人所走路程的和。 (65+70)×4 4.比较两种算法。
6、 让学生说说两种解法分别先求什么,再求什么?再引导学生观察两种解法的算式之间有什么联系?(为什么两种解法算式不同却结果相等?)(符合乘法分配律)5.做一做(投影)①甲乙两人同时从两地面对面走来,经过6分钟两人相遇(如图),求两地间的路程. 甲每分钟走60米,乙每分钟走75米 a.相遇时甲行了多少米?( )×( )=( )米 b.75×6表示( ) c.两地间的路程:( )×( )+( )×( )=( )米 另一种解法: a.两人每分所走的路程的和是:( )+( )=( )米 b.两地间的路程是[( )+( )]×( )=( )米 ②两车同时从两
7、地相对开出,4小时相遇,一辆汽车每小时行48千米,另一辆汽车每小时行52千米,求两地之间相距多少千米?(两种方法解答) 四、拓思创新 1.甲乙两个工程队同时修筑一条公路,14天修完,甲队每天修280米,乙队每天修300米,这条路全长多少米? 2.甲乙两车同时从两地相对出发,甲车每小时行45千米,乙车每小时行50千米,6小时后两车还相距30千米,求两地之间相距多少千米? [评析:练习的设计由浅入深,有坡度多层次,先表述相遇问题的解题思路,强化学生口头表达能力,促使知识内化,然后解决与相遇问题类似的应用题,实现知识、技能和方法的迁移,最后解决已知条件有变化的
8、相遇问题,突破固定的思维