高二数学分类计数原理与分步计数原理教案

高二数学分类计数原理与分步计数原理教案

ID:41121406

大小:137.00 KB

页数:8页

时间:2019-08-16

高二数学分类计数原理与分步计数原理教案_第1页
高二数学分类计数原理与分步计数原理教案_第2页
高二数学分类计数原理与分步计数原理教案_第3页
高二数学分类计数原理与分步计数原理教案_第4页
高二数学分类计数原理与分步计数原理教案_第5页
资源描述:

《高二数学分类计数原理与分步计数原理教案》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、高二数学分类计数原理与分步计数原理教案教学目标:  掌握分类计数原理与分步计数原理,并能用这两个原理分析和解决一些简单问题.教具准备:投影胶片(两个原理).教学过程:[设置情境]  先看下面的问题:  2002年夏季在韩国与日本举行的第17届世界杯足球赛共有32个队参赛.它们先分成8个小组进行循环赛,决出16强,这16个队按确定的程序进行淘汰赛后,最后决出冠亚军,此外还决出了第三、第四名.问一共安排了多少场比赛?  要回答上述问题,就要用到排列、组合的知识.排列、组合是一个重要的数学方法,粗略地说,排列、组合方

2、法就是研究按某一规则做某事时,一共有多少种不同的做法.  在运用排列、组合方法时,经常要用到分类计数原理与分步计数原理,下面我们举一些例子来说明这两个原理.[探索研究]  引导学生看下面的问题.(出示投影)  从甲地到乙地,可以乘火车,也可以乘汽车,一天中,火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?  因为一天中乘火车有3种走法,乘汽车有2种走法,每一种走法都可以从甲地到乙地,所以共有3+2=5种不同的走法,如图所示.  一般地,有如下原理:(出示投影)  分类计数原

3、理 完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,…,在第类办法中有种不同的方法,那么完成这件事共有:种不同的方法.  再看下面的问题.(出示投影)  从甲地到乙地,要从甲地选乘火车到丙地,再于次日从丙地乘汽车到乙地.一天中,火车有3班,汽车有2班.那么两天中,从甲地到乙地共有多少种不同的走法(如图)?  这个问题与前一个问题不同.在前一个问题中,采用乘火车或汽车中的任何一种方式,都可以从甲地到乙地;而在这个问题中,必须经过先乘火车、后乘汽车两个步骤,才能从甲地到乙地.  这

4、里,因为乘火车有3种走法,乘汽车有2种走法,所以乘一次火车再接乘一次汽车从甲地到乙地,共有3×2=6种不同的走法.(让学生具体列出6种不同的走法)  于是得到如下原理:(出示投影)  分步计数原理完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,做第种不同的方法.  教师提出问题:分类计数原理与分步计数原理有什么不同?  学生回答后,教师出示投影:分类计数原理与分步计数原理都是涉及完成一件事的不同方法的种数的问题,它们的区别在于:分类计数原理与“分类”有关,各种方法相互独立,用其中

5、任何一种方法都可以完成这件事;分步计数原理与“分步”有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.(出示投影)  例1 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.  (1)从书架上任取1本书,有多少种不同的取法?  (2)从书架的第1、2、3层各取1本书,有多少种不同的取法?(解答略)  教师点评:注意区别“分类”与“分步”.  例2 一种号码锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成多少个四位数字的号码?  (解答

6、略)  例3 要从甲、乙、丙3名工人中选出2名分别上日班和晚班,有多少种不同的选法?  (解答略)[演练反馈]  1.有不同的中文书9本,不同的英文书7本,不同的日文书5本.从其中取出不是同一国文字的书2本,问有多少种不同的取法?  (由一名学生板演后,教师讲评)  2.集合,.从、中各取1个元素作为点的坐标.  (1)可以得到多少个不同的点?  (2)这些点中,位于第一象限的有几个?  (由一名学生板演后,教师讲评)  3.某中学的一幢5层教学楼共有3处楼梯,问从1楼到5楼共有多少种不同的走法?  4.某艺术

7、组有9人,每人至少会钢琴和小号中的一种乐器,其中7人会钢琴,3人会小号,从中选出会钢琴与会小号的各1人,有多少种不同的选法?[参考答案]  1.解:取出不是同一国文字的书2本,可以分为三类:中英、中日、英日,而每一类中又都可分两步来取,因此有种不同的取法.  注意:有些较复杂的问题往往不是单纯的“分类”“分步”可以解决的,而要将“分类”“分步”结合起来运用.一般是先“分类”,然后再在每一类中“分步”,综合应用分类计数原理和分步计数原理.2.解:(1)一个点的坐标有、两个元素决定,它们中有一个不同则表示不同的点.

8、可以分为两类:中的元素为,中的元素为或中的元素为,中的元素为,共得到 3×4+4×3=24个不同的点.  (2)第一象限内的点,即、均为正数,所以只能取、中的正数,共有2×2+2×2=8个不同的点.3.解:由于1、2、3、4层每一层到上一层都有3处楼梯,根据分步计数原理4.解:由题意可知,在艺术组9人中,有且仅有一人既会钢琴又会小号(把该人称为“多面手”),只会钢琴的有6人,只会小号的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。