欢迎来到天天文库
浏览记录
ID:41115385
大小:2.28 MB
页数:19页
时间:2019-08-16
《Attention-Based Models for Speech Recognition》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、Attention-BasedModelsforSpeechRecognitionJanChorowskiDzmitryBahdanauUniversityofWrocław,PolandJacobsUniversityBremen,Germanyjan.chorowski@ii.uni.wroc.plDmitriySerdyukKyunghyunChoYoshuaBengioUniversitedeMontr´eal´UniversitedeMontr´eal´UniversitedeMontr´eal´CIFARSeniorFello
2、wAbstractRecurrentsequencegeneratorsconditionedoninputdatathroughanattentionmechanismhaverecentlyshownverygoodperformanceonarangeoftasksin-cludingmachinetranslation,handwritingsynthesis[1,2]andimagecaptiongen-eration[3].Weextendtheattention-mechanismwithfeaturesneededfors
3、peechrecognition.Weshowthatwhileanadaptationofthemodelusedformachinetranslationin[2]reachesacompetitive18.7%phonemeerrorrate(PER)ontheTIMITphonemerecognitiontask,itcanonlybeappliedtoutteranceswhichareroughlyaslongastheonesitwastrainedon.Weofferaqualitativeexplanationofthi
4、sfailureandproposeanovelandgenericmethodofaddinglocation-awarenesstotheattentionmechanismtoalleviatethisissue.Thenewmethodyieldsamodelthatisrobusttolonginputsandachieves18%PERinsingleutterancesand20%in10-timeslonger(repeated)utterances.Finally,weproposeachangetotheat-tent
5、ionmechanismthatpreventsitfromconcentratingtoomuchonsingleframes,whichfurtherreducesPERto17.6%level.1IntroductionRecently,attention-basedrecurrentnetworkshavebeensuccessfullyappliedtoawidevarietyoftasks,suchashandwritingsynthesis[1],machinetranslation[2],imagecaptiongener
6、ation[3]andvisualobjectclassification[4].1Suchmodelsiterativelyprocesstheirinputbyselectingrelevantcontentateverystep.Thisbasicideasignificantlyextendstheapplicabilityrangeofend-to-endarXiv:1506.07503v1[cs.CL]24Jun2015trainingmethods,forinstance,makingitpossibletoconstructn
7、etworkswithexternalmemory[6,7].Weintroduceextensionstoattention-basedrecurrentnetworksthatmakethemapplicabletospeechrecognition.Learningtorecognizespeechcanbeviewedaslearningtogenerateasequence(tran-scription)givenanothersequence(speech).Fromthisperspectiveitissimilartoma
8、chinetranslationandhandwritingsynthesistasks,forwhichattention-basedmethodshavebeenfoundsuitable
此文档下载收益归作者所有