Attention-Based Models for Speech Recognition

Attention-Based Models for Speech Recognition

ID:41115385

大小:2.28 MB

页数:19页

时间:2019-08-16

Attention-Based Models for Speech Recognition_第1页
Attention-Based Models for Speech Recognition_第2页
Attention-Based Models for Speech Recognition_第3页
Attention-Based Models for Speech Recognition_第4页
Attention-Based Models for Speech Recognition_第5页
资源描述:

《Attention-Based Models for Speech Recognition》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Attention-BasedModelsforSpeechRecognitionJanChorowskiDzmitryBahdanauUniversityofWrocław,PolandJacobsUniversityBremen,Germanyjan.chorowski@ii.uni.wroc.plDmitriySerdyukKyunghyunChoYoshuaBengioUniversitedeMontr´eal´UniversitedeMontr´eal´UniversitedeMontr´eal´CIFARSeniorFello

2、wAbstractRecurrentsequencegeneratorsconditionedoninputdatathroughanattentionmechanismhaverecentlyshownverygoodperformanceonarangeoftasksin-cludingmachinetranslation,handwritingsynthesis[1,2]andimagecaptiongen-eration[3].Weextendtheattention-mechanismwithfeaturesneededfors

3、peechrecognition.Weshowthatwhileanadaptationofthemodelusedformachinetranslationin[2]reachesacompetitive18.7%phonemeerrorrate(PER)ontheTIMITphonemerecognitiontask,itcanonlybeappliedtoutteranceswhichareroughlyaslongastheonesitwastrainedon.Weofferaqualitativeexplanationofthi

4、sfailureandproposeanovelandgenericmethodofaddinglocation-awarenesstotheattentionmechanismtoalleviatethisissue.Thenewmethodyieldsamodelthatisrobusttolonginputsandachieves18%PERinsingleutterancesand20%in10-timeslonger(repeated)utterances.Finally,weproposeachangetotheat-tent

5、ionmechanismthatpreventsitfromconcentratingtoomuchonsingleframes,whichfurtherreducesPERto17.6%level.1IntroductionRecently,attention-basedrecurrentnetworkshavebeensuccessfullyappliedtoawidevarietyoftasks,suchashandwritingsynthesis[1],machinetranslation[2],imagecaptiongener

6、ation[3]andvisualobjectclassification[4].1Suchmodelsiterativelyprocesstheirinputbyselectingrelevantcontentateverystep.Thisbasicideasignificantlyextendstheapplicabilityrangeofend-to-endarXiv:1506.07503v1[cs.CL]24Jun2015trainingmethods,forinstance,makingitpossibletoconstructn

7、etworkswithexternalmemory[6,7].Weintroduceextensionstoattention-basedrecurrentnetworksthatmakethemapplicabletospeechrecognition.Learningtorecognizespeechcanbeviewedaslearningtogenerateasequence(tran-scription)givenanothersequence(speech).Fromthisperspectiveitissimilartoma

8、chinetranslationandhandwritingsynthesistasks,forwhichattention-basedmethodshavebeenfoundsuitable

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。