资源描述:
《Abelian varieties over finite fields s_q》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、AbelianvarietiesoverfinitefieldsFransOortMathematischInstituut,P.O.Box.80.010,NL-3508TAUtrechtTheNetherlandse-mail:oort@math.uu.nlAbstract.A.WeilprovedthatthegeometricFrobeniusπ=Faofanabelianvarietyoverafinitefieldwithq=paelementshasabsolutevalue√qforeveryembedding.T
2、.HondaandJ.TateshowedthatA7→πAgivesabijectionbetweenthesetofisogenyclassesofsimpleabelianvarietiesoverFqandthesetofconjugacyclassesofq-Weilnumbers.Higher-dimensionalvarietiesoverfinitefields,SummerschoolinG¨ottingen,June2007IntroductionWecouldtrytoclassifyisomorphi
3、smclassesofabelianvarieties.Thetheoryofmodulispacesofpolarizedabelianvarietiesanswersthisquestioncompletely.Thisisageometrictheory.Howeverinthisgeneral,abstracttheoryitisoftennoteasytoexhibitexplicitexamples,toconstructabelianvarietieswithrequiredproperties.Acoar
4、serclassificationisthatofstudyingisogenyclassesofabelianvarieties.Awonderfulandpowerfultheorem,theHonda-Tatetheory,givesacompleteclassificationofisogenyclassesofabelianvarietiesoverafinitefield,seeTheorem1.2.ThebasicideastartswithatheorembyA.Weil,aprooffortheWeilconj
5、ec-tureforanabelianvarietyAoverafinitefieldK=Fq,see3.2:thegeometricFrobeniusπAofA/Kisanalgebraicinteger√whichforeveryembeddingψ:Q(πA)→Chasabsolutevalue
6、ψ(πA)
7、=q.ForanabelianvarietyAoverK=FqtheassignmentA7→πAassociatestoAitsgeometricFrobeniusπA;theisogenyclassofAgiv
8、estheconjugacyclassofthealgebraicintegerπA,andconverselyanalgebraicintegerwhichisaWeilq-numberdeterminesanisogenyclass,asT.HondaandJ.Tateshowed.Geometricobjectsareconstructedandclassifieduptoisogenybyasimplealge-braicinvariant.Thisarithmetictheorygivesaccesstoalot
9、ofwonderfultheorems.Inthesenoteswedescribethistheory,wegivesomeexamples,applicationsandsomeopenquestions.Insteadofreadingthesenotesitismuchbettertoreadthewonderfulandclear[73].Someproofshavebeenworkedoutinmoredetailin[74].In§§1∼15materialdiscussedinthecourseisdes
10、cribed.Intheappendices§§16∼22wehavegatheredsomeinformationweneedforstatementsandproofsofthemainresult.Ihopeallrelevantnotionsandinformationneededforunder-stand