Abelian varieties over finite fields s_q

Abelian varieties over finite fields s_q

ID:41100927

大小:479.88 KB

页数:67页

时间:2019-08-16

Abelian varieties over finite fields s_q_第1页
Abelian varieties over finite fields s_q_第2页
Abelian varieties over finite fields s_q_第3页
Abelian varieties over finite fields s_q_第4页
Abelian varieties over finite fields s_q_第5页
资源描述:

《Abelian varieties over finite fields s_q》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、AbelianvarietiesoverfinitefieldsFransOortMathematischInstituut,P.O.Box.80.010,NL-3508TAUtrechtTheNetherlandse-mail:oort@math.uu.nlAbstract.A.WeilprovedthatthegeometricFrobeniusπ=Faofanabelianvarietyoverafinitefieldwithq=paelementshasabsolutevalue√qforeveryembedding.T

2、.HondaandJ.TateshowedthatA7→πAgivesabijectionbetweenthesetofisogenyclassesofsimpleabelianvarietiesoverFqandthesetofconjugacyclassesofq-Weilnumbers.Higher-dimensionalvarietiesoverfinitefields,SummerschoolinG¨ottingen,June2007IntroductionWecouldtrytoclassifyisomorphi

3、smclassesofabelianvarieties.Thetheoryofmodulispacesofpolarizedabelianvarietiesanswersthisquestioncompletely.Thisisageometrictheory.Howeverinthisgeneral,abstracttheoryitisoftennoteasytoexhibitexplicitexamples,toconstructabelianvarietieswithrequiredproperties.Acoar

4、serclassificationisthatofstudyingisogenyclassesofabelianvarieties.Awonderfulandpowerfultheorem,theHonda-Tatetheory,givesacompleteclassificationofisogenyclassesofabelianvarietiesoverafinitefield,seeTheorem1.2.ThebasicideastartswithatheorembyA.Weil,aprooffortheWeilconj

5、ec-tureforanabelianvarietyAoverafinitefieldK=Fq,see3.2:thegeometricFrobeniusπAofA/Kisanalgebraicinteger√whichforeveryembeddingψ:Q(πA)→Chasabsolutevalue

6、ψ(πA)

7、=q.ForanabelianvarietyAoverK=FqtheassignmentA7→πAassociatestoAitsgeometricFrobeniusπA;theisogenyclassofAgiv

8、estheconjugacyclassofthealgebraicintegerπA,andconverselyanalgebraicintegerwhichisaWeilq-numberdeterminesanisogenyclass,asT.HondaandJ.Tateshowed.Geometricobjectsareconstructedandclassifieduptoisogenybyasimplealge-braicinvariant.Thisarithmetictheorygivesaccesstoalot

9、ofwonderfultheorems.Inthesenoteswedescribethistheory,wegivesomeexamples,applicationsandsomeopenquestions.Insteadofreadingthesenotesitismuchbettertoreadthewonderfulandclear[73].Someproofshavebeenworkedoutinmoredetailin[74].In§§1∼15materialdiscussedinthecourseisdes

10、cribed.Intheappendices§§16∼22wehavegatheredsomeinformationweneedforstatementsandproofsofthemainresult.Ihopeallrelevantnotionsandinformationneededforunder-stand

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。