资源描述:
《A sum product estimates in finite fields and applications英文文献资料》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、GAFA,Geom.funct.anal.Vol.14(2004)27–57cBirkh¨auserVerlag,Basel20041016-443X/04/010027-31DOI10.1007/s00039-004-0451-1GAFAGeometricAndFunctionalAnalysisASUM-PRODUCTESTIMATEINFINITEFIELDS,ANDAPPLICATIONSJ.Bourgain,N.KatzandT.TaoAbstract.LetAbeasubsetofafinitefieldF
2、:=Z/qZforsomeprimeq.If
3、F
4、δ<
5、A
6、<
7、F
8、1−δforsomeδ>0,thenweprovetheestimate
9、A+A
10、+
11、A·A
12、≥c(δ)
13、A
14、1+εforsomeε=ε(δ)>0.Thisisafinitefieldanalogueofaresultof[ErS].WethenusethisestimatetoproveaSze-mer´edi–Trottertypetheoreminfinitefields,andobtainanewestimatefortheErd¨osdistanc
15、eprobleminfinitefields,aswellasthethree-dimensionalKakeyaprobleminfinitefields.1IntroductionLetAbeanon-emptysubsetofafinitefieldF.WeconsiderthesumsetA+A:={a+b:a,b∈A}andtheproductsetA·A:={a·b:a,b∈A}.Let
16、A
17、denotethecardinalityofA.Clearlywehavethebounds
18、A+A
19、,
20、A·A
21、≥
22、A
23、.T
24、heseboundsareclearlysharpwhenAisasubfieldofF;howeverwhenAisnotasubfield(oranaffinetransformationofasubfield)thenweexpectsomeimprovement.Inparticular,whenFisthecyclicfieldF:=Z/qZforsomeprimeq,thenFhasnopropersubfields,andoneexpectssomegainwhen1
25、A
26、
27、F
28、.Thefirstmainresul
29、tofthispaperistoshowthatthisisindeedthecase.Theorem1.1(Sum-productestimate).LetF:=Z/qZforsomeprimeq,andletAbeasubsetofFsuchthat
30、F
31、δ<
32、A
33、<
34、F
35、1−δforsomeδ>0.Thenonehasaboundoftheformmax
36、A+A
37、,
38、A·A
39、≥c(δ)
40、A
41、1+ε(1)forsomeε=ε(δ)>0.28J.BOURGAIN,N.KATZANDT.TAOGAFAWenote
42、thatoneneedsboth
43、A+A
44、and
45、A·A
46、ontheleft-handsidetoobtainanestimateofthistype;fortheadditiveterm
47、A+A
48、thiscanbeseenbyconsideringanarithmeticprogressionsuchasA:={1,...,N},andforthemultiplicativeterm
49、A·A
50、thiscanbeseenbyconsideringageomet-ricprogression.Thustheabovee
51、stimatecanbeviewedasastatementthatasetcannotbehavelikeanarithmeticprogressionandageometricprogres-sionsimultaneously.ThissuggestsusingFreiman’stheorem[Fr]toobtaintheestimate(1),butthebestknownquantitativeboundsforFreiman’stheorem[C]areonlyabletogainalogarithmic
52、factorin
53、A
54、overthetrivialbound,asopposedtothepolynomialgainof
55、A
56、εinourresult.Wedonotknowwhattheoptimalvalueofεshouldbe.IfthefinitefieldFwerereplacedwiththeintegersZ,thenitisan