高等数学下空间解析几何与向量代数

高等数学下空间解析几何与向量代数

ID:41096337

大小:273.10 KB

页数:17页

时间:2019-08-16

高等数学下空间解析几何与向量代数_第1页
高等数学下空间解析几何与向量代数_第2页
高等数学下空间解析几何与向量代数_第3页
高等数学下空间解析几何与向量代数_第4页
高等数学下空间解析几何与向量代数_第5页
资源描述:

《高等数学下空间解析几何与向量代数》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、向量:既有大小又有方向的量.向量表示:模长为1的向量.零向量:模长为0的向量.

2、

3、向量的模:向量的大小.单位向量:一、向量的概念或或或自由向量:不考虑起点位置的向量.相等向量:大小相等且方向相同的向量.负向量:大小相等但方向相反的向量.向径:空间直角坐标系中任一点与原点构成的向量.[1]加法:(平行四边形法则)特殊地:若‖分为同向和反向(平行四边形法则有时也称为三角形法则)二、向量的加减法向量的加法符合下列运算规律:(1)交换律:(2)结合律:(3)[2]减法三、向量与数的乘法数与向量的乘积符合下列运算规律:(1)结合律:(2)分配律:两个向量的平行关系证充分性显然;必

4、要性‖两式相减,得按照向量与数的乘积的规定,上式表明:一个非零向量除以它的模的结果是一个与原向量同方向的单位向量.例1化简解例2试用向量方法证明:对角线互相平分的四边形必是平行四边形.证与平行且相等,结论得证.向量的概念向量的加减法向量与数的乘法(注意与标量的区别)(平行四边形法则)(注意数乘后的方向)四、小结思考题已知平行四边形ABCD的对角线试用表示平行四边形四边上对应的向量.思考题解答练习题练习题答案

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。