资源描述:
《医学统计学简答题》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、实用文案医学统计学简答题1.简述标准差、标准误的区别与联系?区别:(1)含义不同:标准差S表示观察值的变异程度,描述个体变量值(x)之间的变异度大小,S越大,变量值(x)越分散;反之变量值越集中,均数的代表性越强。标准误..估计均数的抽样误差的大小,是描述样本均数之间的变异度大小,标准误越大,样本均数与总体均数间差异越大,抽样误差越大;反之,样本均数越接近总体均数,抽样误差越小。(2)与n的关系不同:n增大时,S趋于σ(恒定),标准误减少并趋于0(不存在抽样误差)。(3)用途不同:标准差表示x的变异度大小、计算变异系数
2、、确定医学参考值范围、计算标准误等,标准误用于估计总体均数可信区间和假设检验。联系:二者均为变异度指标,样本均数的标准差即为标准误,标准差与标准误成正比。2.简述假设检验的基本步骤。1.建立假设,确定检验水准。2.选择适当的假设检验方法,计算相应的检验统计量。3.确定P值,下结论3.正态分布的特点和应用: 特点: 1、集中性:正态曲线的高峰位于正中央,即均数所在的位置; 2、对称性:正态分布曲线位于直角坐标系上方,以x=u为中心,左右对称,曲线两端永远不与横轴相交;3、均匀变动性:正态曲线由均数所在处开始,分别向左右两
3、侧逐渐均匀下降; 文案大全实用文案4、正态分布有两个参数,即均数μ和标准差σ,可记作N(μ,σ):均数μ决定正态曲线的中心位置;标准差σ决定正态曲线的陡峭或扁平程度。σ越小,曲线越陡峭;σ越大,曲线越扁平; 5、u变换:为了便于描述和应用,常将正态变量作数据转换; 应用: 1.估计医学参考值范围 2.质量控制 3.正态分布是许多统计方法的理论基础1.简述参考值范围与均数的可信区间的区别和联系可信区间与参考值范围的意义、计算公式和用途均不同。 1.从意义来看 95%参考值范围是指同质总体内包括95%个体值的估计范围,而
4、总体均数95%可信区间是指 95%可信度估计的总体均数的所在范围 2.从计算公式看 若指标服从正态分布,95%参考值范围的公式是:±1.96s。 总体均数95%可信区间的公式是: 前者用标准差,后者用标准误。前者用1.96,后者用α为0.05,自由度为v的t界值。2.频数表的用途和基本步骤。用途:(1)揭示资料的分布特征和分布类型;(2)便于进一步计算指标和分析处理;(3)便于发现某些特大或特小可疑值。基本步骤:(1)求出极差;(2)确定组段,一般设8~15个组段;(3)确定组距;组距=R/组段数,但一般取一方便计算
5、的数字;(4)列出各个组段并确定每一组段频数。3.非参数统计检验的适用条件。(1)资料不符合参数统计法的应用条件(总体为正态分布、且方差相等)或总体分布类型未知;(2)等级资料;(3)分布呈明显偏态又无适当的变量转换方法使之满足参数统计条件;(4)在资料满足参数检验的要求时,应首选参数法,以免降低检验效能4.线性回归的主要用途。文案大全实用文案1.研究因素间的依存关系,自变量和应变量之间是否存在线性关系,即研究一个或多个自变量对应变量的作用,或者应变量依赖自变量变化而变化的规律。2.利用直线回归方程可进行预测估计。3.
6、用容易测量的指标估计不易测量的指标。4.获得精确度更高的医学参考值范围。1.简述检验假设与可信区间的联系与区别。(1)可信区间用于推断总体参数所在的范围,假设检验用于推断总体参数是否不同。前者估计总体参数的大小,后者推断总体参数有无质的不同。(2)可信区间也可回答假设检验的问题。但可信区间不能提供确切的P值范围,只能给出在α水准上有无统计意义。(3)可信区间还可提示差别有无实际意义。2.简述直线回归与直线相关的区别与联系。区别:(1)资料要求不同:直线回归中应变量y是来自正态总体的随机变量,而x既可以是来自正态总体中的
7、随机变量,也可以是严密控制、精确测量的变量;相关分析则要求x,y是来自双变量正态分布总体的随机变量。(2)回归反映的是两个变量的依存关系,取值范围是(-∞,∞)。相关反应两个变量的相互关系,取值范围是(-1,1);(3)回归有单位,相关无单位。联系:统一资料r与b符号相同,即方向一致性,r与b假设检验结果等价,r与b可互相换算,有相关不一定有回归,有回归一定有相关(回归可用来解释相关)3.标准差的实际应用。1表示数据分布的离散程度2常用“x±s”作为计量资料的数字特征描述的专用符号3计算临床上的各种生化、生理指标的参考
8、范围4在单纯随机抽样中,是计量资料估计样本量不可缺少的重要依据之一5可用来计算均数的抽样误差大小。相对数的注意事项p33文案大全实用文案医学统计学名词解释*总体:根据研究目的确定的同质的全部研究单位的观测值,即某个随机变量X可取值的全体。*样本:总体中随机抽取的有代表性的部分观察单位其实测量值的集合。变量:观察对象个体的特征或测量