欢迎来到天天文库
浏览记录
ID:40970310
大小:67.00 KB
页数:6页
时间:2019-08-12
《杯全国高中青年教师优秀课观摩与评比活动教学设计、教案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、《从位移、速度、力到向量》教学设计本节课的内容是北师大版数学必修4,第二章《平面向量》的引言和第一节《从位移、速度、力到向量》两部分,所需课时为1课时。一、教材分析向量是近代数学最重要和最基本的数学概念之一,它是沟通代数、几何与三角函数的桥梁,对更新和完善中学数学知识结构起着重要的作用。向量集数与形于一身,有着极其丰富的实际背景,在现实生活中随处可见的位移、速度、力等既有大小又有方向的量是它的物理背景,有向线段是它的几何背景。向量就是从这些实际对象中抽象概括出来的数学概念,经过研究,建立起完整的知识体系之后,向量又作为数学模型,广泛地应用于解决数学、物理学科及实际生活中
2、的问题,因此它在整个高中数学的地位是不言而喻的。本课是“平面向量”的起始课,具有“统领全局”的作用。本节概念课,重要的不是向量的形式化定义及几个相关概念,而是能让学生去体会认识与研究数学新对象的方法和基本思路,进而提高提出问题,解决问题的能力。二、学情分析在学生的已有经验中,与本课内容相关的有:数的抽象过程、实数的绝对值(线段的长度)、数的相等、单位长度、0和1的特殊性、线段的平行与共线等。三、目标定位根据以上的分析,本节课的教学目标定位:1)、知识目标⑴通过对位移、速度、力等实例的分析,形成平面向量的概念;⑵学会平面向量的表示方法,理解向量集形与数于一身的基本特征;⑶
3、理解零向量、单位向量、相等向量、平行向量的含义。2)、能力目标⑴培养用联系的观点,类比的方法研究向量;⑵获得研究数学新问题的基本思路,学会概念思维;3)、情感目标⑴运用实例,激发爱国热情;⑵使学生自然的、水到渠成的实现“概念的形成”;⑶让学生积极参与到概念本质特征的概括活动中,享受寓教于乐。重难点:重点:向量概念、向量的几何表示、以及相等向量概念;难点:让学生感受向量、平行或共线向量等概念形成过程;四、教学过程概述:4.1向量概念的形成4.1.1让学生感受引入概念的必要性引子:在世博园内,有位同学在参观完了中国馆后将要去德国馆参观,由位置的变化引出位移。意图:向量概念不
4、是凭空产生的。用这一简单直观的问题让学生感受“既有大小又有方向的量”的客观存在,自然引出学习内容,学生会有亲切感,有助于激发学习兴趣。问题1你能否再举出一些既有大小又有方向的量?意图:激活学生的已有相关经验。进一步直观演示,加深印象。追问:生活中有没有只有大小没有方向的量?请举例。意图:形成区别不同量的必要性。概念抽象需要典型丰富的实例,让学生举例可以观察到他们对概念属性的领悟,形成对概念的初步认识,为进一步抽象概括做准备。类比数的概念获得向量概念的定义(板书)。4.1.2向量的表示方法问题2数学中,定义概念后,通常要用符号表示它。怎样把你举例中的向量表示出来呢意图:让
5、学生先练习力的表示,让错误呈现,激发认知冲突,最后自觉接受用带有箭头的线段(有向线段)来表示向量。(教师引导学生进一步完善)几何表示法:记作AB
6、AB
7、为AB的长度(又称模)。字母表示法:a、b、c……或a、b、c……4.1.3单位向量、零向量的概念:问题3用有向线段表示向量,学生演板,提出问题,大家画得线段长度长短不一怎么回事?如何解决这问题?由单位长度引入单位向量意图:这样过渡学生不会感觉新的概念是从天而降,而是进一步学习的需要归纳小结:单位向量——长度等于1个单位长度并与a同向的向量叫做a方向上的单位向量.让演板学生回到座位之后利用这个情境提出问题,他位移的大小是
8、什么?归纳小结:零向量——长度(模)为0的向量,记作0,它的方向是任意的。提问:你们认为零向量和单位向量特殊吗?它们的特殊性体现在哪?类比实数集合中的0和1.4.2相等向量、平行(共线)向量概念的形成设计活动:传花游戏意图:通过游戏调动学生的兴趣和积极性,让学生通过亲身经历去体会相等向量与平行向量的本质特征。归纳:1、从“方向”角度看,有方向相同或相反的非零向量就是平行向量。记作:a∥b∥c任一组平行向量都可移到同一条直线上,所以平行向量也叫共线向量。2、从“长度”角度看,有模相等的向量,︱a︱=︱b︱3、既关注方向有又关注长度有相等向量:记作:a=babcCOBA规定
9、:0与任一向量都平行或(共线)。教师通过动画演示深化上述两个概念问题4由相等向量的概念知道,向量完全有它的方向和大小确定。由此,你能说说数学中的向量与物理中的矢量的异同吗?另外,向量的平行、共线与线段的平行、共线有什么区别与联系?意图:让学生注意把向量概念与物理背景、几何背景明确区分,真正抓住向量的本质特征,完成“数学化”的过程。4.3课堂练习:1、概念辨析1)两个长度相等的向量一定相等.2)相等向量的起点必定相同.3)平行向量就是共线向量.4)若AB与CD共线,则A、B、C、D四点必在同一条直线上.5)向量a与b平行,则向量a与b的方向
此文档下载收益归作者所有