资源描述:
《Multiple-Input, Multiple-Output Channel Model》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、MULTIPLE-INPUT,MULTIPLE-OUTPUTCHANNELMODELSWileySeriesinAdaptiveandLearningSystemsforSignalProcessing,CommunicationandControlEditor:SimonHaykinAdaliandHaykin/ADAPTIVESIGNALPROCESSING:NextGenerationSolutionsBeckerman/AdaptiveCooperativeSystemsCandy/Model-
2、BasedSignalProcessingChen,Haykin,Eggermont,andBecker/CorrelativeLearning:ABasisforBrainandAdaptiveSystemsChenandGu/Control-OrientedSystemIdentification:AnH1ApproachCherkasskyandMulier/LearningfromData:Concepts,Theory,andMethodsCostaandHaykin/Multiple-Inpu
3、t,Multiple-OutputChannelModels:TheoryandPracticeDiamantarasandKung/PrincipalComponentNeuralNetworks:TheoryandApplicationsHaykin/UnsupervisedAdaptiveFiltering:BlindSourceSeparationHaykinUnsupervisedAdaptiveFiltering:BlindDeconvolutionHaykinandLiuHandboo
4、konArrayProcessingandSensorNetworksHaykinandPuthussarypadyChaoticDynamicsofSeaClutterHaykinandWidrowLeastMean-SquareAdaptiveFiltersHrycejNeurocontrol:TowardsanIndustrialControlMethodologyHyva¨rinen,Karhunen,andOjaIndependentComponentAnalysisKristic´,
5、Kanellakopoulos,andKokotovic´NonlinearandAdaptiveControlDesignMannIntelligentImageProcessingNikiasandShaoSignalProcessingwithAlpha-StableDistributionsandApplicationsPassinoandBurgessStabilityAnalysisofDiscreteEventSystemsSa´nchez-Pen˜aandSznaierRobu
6、stSystemsTheoryandApplicationsSandberg,Lo,Fancourt,Principe,Katagairi,andHaykinNonlinearDynamicalSystems:FeedforwardNeuralNetworkPerspectivesSellathuraiandHaykinSpace-TimeLayeredInformationProcessingforWirelessCommunicationsSpooner,Maggiore,Ordo´n˜ez,a
7、ndPassinoStableAdaptiveControlandEstimationforNonlinearSystems:NeuralandFuzzyApproximatorTechniquesTaoAdaptiveControlDesignandAnalysisTaoandKokotovic´AdaptiveControlofSystemswithActuatorandSensorNonlinearitiesTsoukalasandUhrigFuzzyandNeuralApproaches
8、inEngineeringVanHulleFaithfulRepresentationsandTopographicMaps:FromDistortion-toInformation-BasedSelf-OrganizationVapnikStatisticalLearningTheoryWerbosTheRootsofBackpropagation:FromOrderedDerivativestoNeuralNetworksandP