modeling first impressions from highly variable facial images

modeling first impressions from highly variable facial images

ID:40946672

大小:1.75 MB

页数:16页

时间:2019-08-11

modeling first impressions from highly variable facial images_第1页
modeling first impressions from highly variable facial images_第2页
modeling first impressions from highly variable facial images_第3页
modeling first impressions from highly variable facial images_第4页
modeling first impressions from highly variable facial images_第5页
资源描述:

《modeling first impressions from highly variable facial images》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ModelingfirstimpressionsfromhighlyvariablePNASPLUSfacialimages1RichardJ.W.Vernon,ClareA.M.Sutherland,AndrewW.Young,andTomHartleyDepartmentofPsychology,UniversityofYork,Heslington,YorkYO105DD,UnitedKingdomEditedbySusanT.Fiske,PrincetonUniversity,Princeton,NJ,andapprove

2、dJuly7,2014(receivedforreviewMay27,2014)Firstimpressionsofsocialtraits,suchastrustworthinessorhaveotherimmaturecharacteristicsbasedona“babyfaced”dominance,arereliablyperceivedinfaces,anddespitetheirappearance(16).Exploringthisgeneralapproachofseekingthequestionableval

3、iditytheycanhaveconsiderablereal-worldcon-factorsthatmightunderliefacialfirstimpressions,Oosterhofsequences.WesoughttouncovertheinformationdrivingsuchandTodorov(17)foundthatarangeoftraitratingsactuallyseemjudgments,usinganattribute-basedapproach.Attributes(physi-toref

4、lectjudgmentsalongtwonear-orthogonaldimensions:calfacialfeatures)wereobjectivelymeasuredfromfeaturetrustworthiness(valence)anddominance.Thetrustworthinesspositionsandcolorsinadatabaseofhighlyvariable“ambient”dimensionappearedtorelyheavilyonangriness-to-happinessfaceph

5、otographs,andthenusedasinputforaneuralnetworkcues,whereasdominanceappearedtoreflectfacialmaturityortomodelfactordimensions(approachability,youthful-attractive-masculinity.Theuseofsuchcuesbyhumanperceiverscanbeness,anddominance)thoughttounderliesocialattributions.Avery

6、subtle;evensupposedlyneutralfacescanhaveastructurallinearmodelbasedonthisapproachwasabletoaccountforresemblancetoemotionalexpressionsthatcanguidetrait58%ofthevarianceinraters’impressionsofpreviouslyunseenjudgments(18).faces,andfactor-attributecorrelationscouldbeusedto

7、rankOosterhofandTodorov’s(17)findingsimplythattraitjudg-attributesbytheirimportancetoeachfactor.Reversingthispro-mentsarelikelytobebaseduponbothstable(e.g.,masculinity)cess,neuralnetworkswerethenusedtopredictfacialattributesandmoretransient(e.g.,smiling)physicalproper

8、ties(“attrib-andcorrespondingimagepropertiesfromspecificcombinationsofutes”)ofanindividual’sface.However,thetraitratingsthey

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。