高等教育数学微积分发展史论文

高等教育数学微积分发展史论文

ID:40911855

大小:23.98 KB

页数:4页

时间:2019-08-10

高等教育数学微积分发展史论文_第1页
高等教育数学微积分发展史论文_第2页
高等教育数学微积分发展史论文_第3页
高等教育数学微积分发展史论文_第4页
资源描述:

《高等教育数学微积分发展史论文》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、微积分发展应用史学院:数学与计算机科学学院专业:数学与应用数学(1)班【摘要】:由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支还是牛顿和莱布尼茨。【关键词】:解析几何建立牛顿莱布尼兹发展史【正文】如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要

2、部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。从17世纪开始,随着社会的进步和生产力的发展,自文艺复新以来在资本主义生产力刺激下蓬勃发展的自然科学开始迈入综合与突破阶段,而这种综合与突破所面临的数学困难,是的微积分学的基本问题空前的成为人们关注的焦点:确定非匀速运动物体的速度与加速度使瞬时变化率问题成为研究;望远镜的光程设计需要确定透镜曲面上任意一点的法线这就是人以曲线的切线问题变得不可回避;确定炮弹的最大射程及寻求行星轨道的近日点与远日点等涉及的函数极大值、极小值问题也亟待解决与此同时,行星眼轨道运行的路程,行星矢径扫过的面积

3、及物体的重心和引力的计算有使微积分学的基本问题——面积、体积、曲线长、重心和引力的计算的兴趣被重新激发起来。在十七世纪中叶几乎所有的科学大师都致力于寻求解决这些难题的新的数学工具,在这种特殊的背景下微积分学即将应运而生。任何新事物的产生都有一个准备的过程,微积分的诞生也不会例外,德国天文学家数学家开普勒(JohannesKepler,1571-1630),意大利数学家卡瓦列里(BonaventuraCavalieri,1598-1647)都为此做出不可磨灭的贡献,但他们主要采用几何方法并集中于积分问题,解析几何的诞生改变了这一状况,其创

4、始人笛卡尔和费马将坐标方法引进微分学问题研究的先锋,笛卡尔在《几何学》中提出了切线的所谓“圆法”,其本质作为一种代数方法,在推动微积分的早期发展中有着很大影响,牛顿就是以笛卡尔原发为起点高踏上了研究微积分的道路。牛顿通过对反复阅读笛卡尔《几何学》,对笛卡尔求切线的“圆法”产生浓厚的兴趣,并试图寻找解决该问题的最优方法,在1665年夏至1667年春终于功夫不负有心人,在探讨微积分方向取得突破性进展,并将研究成果整理成一篇总结性论文,此文献现在称为《流数简论》(TractionFluxions)(因为牛顿当时并没有发表,只是在研究同人中间传

5、阅),成为历史上最早系统的微积分文献,标志作为积分的诞生。《流数简论》充分反映了牛顿微积分学的的运动背景,该文事实上以速度形式引进了“流数”(即微商)的概念,虽然没有使用流数这一术语,但却在其中提出了微积分的基本问题,虽然《简论》对微积分的基本定理的论述不能算是现代意义上的严格证明,但是牛顿再后来的著作中队高问题做了不依赖于运动清楚证明。不过此时的微积分在很多方面还不成熟,牛顿对自己的成果并未做宣扬,而是用1667-1693这段时间的大约四分之一来不断该今晚自己的微积分学说,最终将研究成果议论文的形式总结出来,这些论文有:《运用无限多项

6、的分析》(DeAnalysiperAequationesNumeroTerminnrumInfinitas)、《流数法与无穷级数》(MethodusFluxionumetSerierumInfinitarum),《曲线求积数》(TractatusdeQuadraturaCurvarum)。最后一篇作为牛顿最成熟的微积分著述,在其中对以前的不足之处做了大量的改进,重新重视无限小瞬0的作用,并强调在数学中,最小的误差也不能被忽略……就是这种严谨的科学态度,最终成为了那个时代的历史巨人。但在微积分研究过程并非牛顿一枝独秀,莱布尼茨(Cottf

7、riedWilhelmLeibniz,1646-1716)有足够的理由和他分享荣誉,他在法国巴黎工作期间与荷兰数学家物理学家惠更斯(C.Huygens)结实交流激发了他对数学的兴趣,通过对卡瓦列里、帕斯卡、巴罗扥人的著作了解求曲线的切线以及求面积体积等积分问题,在此基础上形成自己研究方向从几何问题着手,尤其是特征三角形也称“微分三角形”的研究,并在1673年提出了他自己的特征三角(因为在此之前巴罗和帕斯卡的著作中已经出现过),并在其中认识到求曲线的切线依赖于横纵坐标的差值当这些差值变成无限小时值比;求曲线下的面积则依赖于无限小区间上的纵

8、坐标之和,正是由于这两类问题的互逆关系被发现,使得莱布尼茨有的研究的新目标,就是超过巴罗等人建立一般普通的算法,将以解决这两类问题的各种结果技巧统一起来,而他早年研究数的序列的积累已经使他找到了向这个目标挺

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。