Galois Theory学习

Galois Theory学习

ID:40896536

大小:1.51 MB

页数:35页

时间:2019-08-10

Galois Theory学习_第1页
Galois Theory学习_第2页
Galois Theory学习_第3页
Galois Theory学习_第4页
Galois Theory学习_第5页
资源描述:

《Galois Theory学习》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、GALOISTHEORY1.IntroductionGaloistheorygrowsoutofattemptstosolvepolynomialequations.Let’shaveabriefhistoryofthisimportantproblem.(1)Quadraticequations.Recallhowonesolvesthequadraticequationx2+bx+c=0.We‘completethesquare’:bb2(x+)2+c−=0,24andsolveforx:x=−b+rb2−c.24Thiswasknownt

2、otheBabylonians(400BC,algorithmic),toEuclid(300BC,geometric),andtoBrahmagupta(6thcenturyAD,allowingnegativequantities,usinglettersforunknowns).(2)Cubicequations.Wenextconsideracubicequationx3+bx2+cx+d=0.Thiswasfirstsolved(atleastinspecialcases)bydalFerroin1515.Hekepthismetho

3、dssecretfor11yearsbeforepassinghisknowledgetohisstudentFior.By1535Tartagliahada‘general’solution,anddefeatedFiorinpubliccompetition.CardanoconvincedTartagliatodivulgehissolution,andbreakinganoathofsecrecy,publisheditinhisvolumeArsMagna.Thegeneralequationabovecanbereducedtoth

4、ecasey3+my=n(why?).ThenCardano’sformulaisssrr3n2m3n3n2m3ny=++−+−.42724272Remarkably,negativenumberswerenotunderstoodatthetime;theformula‘makessense’whenmandnarenonnegative.(3)Quarticequations.TheseweresolvedbyCardano’sstudentFerrari.(4)Quinticequations.Abelprovedin1824thatth

5、ereisnogeneralformulaforxsatisfyingtheequationx5+bx4+cx3+dx2+ex+f=0√intermsofb,c,d,e,fcombinedusing+,−,×,÷,n.Galois(1811-1312)wasthepioneerinthisfield.Heshowedthatsolutionsofapolynomialequationaregovernedbyagroup.Toillustratethis,letusconsiderthepolynomialx4=2.√Onesolutionis

6、thepositiverealfourthrootα=42of2.Theotherthreearethenβ√andδ=−i.42.Letuslistsomeequationsthatthesefourrootssatisfy:√√=i.42,γ=−42,α+γ=0,αβγδ=−2,αβ−γδ=0,....Whathappensifweswapαandγinthislist?Wegetγ+α=0,γβαδ=−2,γβ−αδ=0,...,whichareallstillvalidequations.Ifweperformthepermutati

7、onα7→β7→γ7→δ7→αtotheoriginallist,weobtainβ+δ=0,βγδα=−2,βγ−δα=0,...,1whichagainarealltrue.Webegintogettheimpressionthatanythinggoes.Butswappingαandβintheoriginallistgivesβ+γ=0,βαγδ=−2,βα−γδ=0,...,andthefirstoftheseequationsisfalse.Thesetofpermutationsofthesolutionsα,β,γ,δwhic

8、hpreservethevalidityofallpolynomialequationsformsagroup,theGaloisgroupofthe

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。