Intro_To_Galois_Theory

Intro_To_Galois_Theory

ID:34616715

大小:280.68 KB

页数:44页

时间:2019-03-08

Intro_To_Galois_Theory_第1页
Intro_To_Galois_Theory_第2页
Intro_To_Galois_Theory_第3页
Intro_To_Galois_Theory_第4页
Intro_To_Galois_Theory_第5页
资源描述:

《Intro_To_Galois_Theory》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Course311:HilaryTerm2000PartIII:IntroductiontoGaloisTheoryD.R.WilkinsContents3IntroductiontoGaloisTheory23.1RingsandFields.........................23.2Ideals...............................43.3QuotientRingsandHomomorphisms..............53.4TheCharacteristi

2、cofaRing...................73.5PolynomialRings.........................73.6Gauss'sLemma..........................103.7Eisenstein'sIrreducibilityCriterion...............123.8FieldExtensionsandtheTowerLaw..............123.9AlgebraicFieldExtensions..........

3、..........143.10RulerandCompassConstructions................163.11SplittingFields..........................213.12NormalExtensions........................243.13Separability............................253.14FiniteFields............................273.15TheP

4、rimitiveElementTheorem.................303.16TheGaloisGroupofaFieldExtension.............313.17TheGaloiscorrespondence....................333.18QuadraticPolynomials......................353.19CubicPolynomials........................353.20QuarticPolynomial

5、s.......................363.21TheGaloisgroupofthepolynomialx42...........373.22TheGaloisgroupofapolynomial................393.23SolvablepolynomialsandtheirGaloisgroups..........393.24Aquinticpolynomialthatisnotsolvablebyradicals.....4313IntroductiontoGal

6、oisTheory3.1RingsandFieldsDe nitionAringconsistsofasetRonwhicharede nedoperationsofadditionandmultiplicationsatisfyingthefollowingaxioms:x+y=y+xforallelementsxandyofR(i.e.,additioniscommutative);(x+y)+z=x+(y+z)forallelementsx,yandzofR(i.e.,additionisass

7、ociative);thereexistsananelement0ofR(knownasthezeroelement)withthepropertythatx+0=xforallelementsxofR;givenanyelementxofR,thereexistsanelementxofRwiththepropertythatx+(x)=0;x(yz)=(xy)zforallelementsx,yandzofR(i.e.,multiplicationisassociative);x(y+z)

8、=xy+xzand(x+y)z=xz+yzforallelementsx,yandzofR(theDistributiveLaw).Lemma3.1LetRbearing.Thenx0=0and0x=0forallelementsxofR.ProofThezeroelement0ofRsatis es0+0=0.UsingtheDistributiveLaw,wededucethatx0+x0=x(0+0)=x0and0x+0

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签