资源描述:
《A Tutorial on Particle Filtering and Smoothing- Fifteen years later》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、ATutorialonParticleFilteringandSmoothing:FifteenyearslaterArnaudDoucetAdamM.JohansenTheInstituteofStatisticalMathematics,DepartmentofStatistics,4-6-7Minami-Azabu,Minato-ku,UniversityofWarwick,Tokyo106-8569,Japan.Coventry,CV47AL,UKEmail:Arnaud@ism.ac.jpEmail:A.M.Johansen@warwick.ac.ukFirstVersion1.0{
2、April2008ThisVersion1.1{December2008AbstractOptimalestimationproblemsfornon-linearnon-Gaussianstate-spacemodelsdonottypicallyadmitanalyticsolutions.Sincetheirintroductionin1993,particlelteringmethodshavebecomeaverypopularclassofalgorithmstosolvetheseestimationproblemsnumericallyinanonlinemanner,i.e
3、.recursivelyasobservationsbecomeavailable,andarenowroutinelyusedineldsasdiverseascomputervision,econometrics,roboticsandnavigation.Theobjectiveofthistutorialistoprovideacomplete,up-to-datesurveyofthiseldasof2008.Basicandadvancedparticlemethodsforlteringaswellassmoothingarepresented.Keywords:Centr
4、alLimitTheorem,Filtering,HiddenMarkovModels,MarkovchainMonteCarlo,Par-ticlemethods,Resampling,SequentialMonteCarlo,Smoothing,State-Spacemodels.1IntroductionThegeneralstatespacehiddenMarkovmodels,whicharesummarisedinsection2.1,provideanextremely
exibleframeworkformodellingtimeseries.Thegreatdescripti
5、vepowerofthesemodelscomesattheexpenseofintractability:itisimpossibletoobtainanalyticsolutionstotheinferenceproblemsofinterestwiththeexceptionofasmallnumberofparticularlysimplecases.Theparticle"methodsdescribedbythistutorialareabroadandpopularclassofMonteCarloalgorithmswhichhavebeendevelopedoverthep
6、astfteenyearstoprovideapproximatesolutionstotheseintractableinferenceproblems.1.1PreliminaryremarksSincetheirintroductionin1993[22],particleltershavebecomeaverypopularclassofnumericalmeth-odsforthesolutionofoptimalestimationproblemsinnon-linearnon-Gaussianscenarios.Incomparisonwithstandardapproxim
7、ationmethods,suchasthepopularExtendedKalmanFilter,theprincipalad-vantageofparticlemethodsisthattheydonotrelyonanylocallinearisationtechniqueoranycrudefunctionalapproximation.Thepricethatmustbepaidfort