激光倍频实验

激光倍频实验

ID:40857713

大小:571.50 KB

页数:6页

时间:2019-08-08

激光倍频实验_第1页
激光倍频实验_第2页
激光倍频实验_第3页
激光倍频实验_第4页
激光倍频实验_第5页
资源描述:

《激光倍频实验》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、11激光倍频一.实验目的和内容1.学习工作物质端面呈布儒斯特角的釹玻璃激光器的调节。2.掌握腔外倍频技术,并了解倍频技术的意义。3.要求每人都调节一次釹玻璃激光器并从黑纸片被激光燃焦的程度,判别每人调节的精度高低。4.观察倍频晶体0.53μm绿色光的输出情况。二.实验基本原理1.非线性光学基础光与物质相互作用的全过程,可分为光作用于物质,引起物质极化形成极化场以及极化场作为新的辐射源向外辐射光波的两个分过程。原子是由原子核和核外电子构成。当频率为ω的光入射介质后,引起其中原子的极化,即负电中心相对正电中心发生位移r,形成电偶极矩,(1)其中,e是负电中心的电量。我们定义单位

2、体积内原子偶极矩的总和为极化强度矢量P,,(2)N是单位体积内的原子数。极化强度矢量和入射场的关系式为,(3)其中χ(1),χ(2),χ(3),…分别称为线性极化率,二级非线性极化率、三级非线性极化率…,并且χ(1)>>χ(2)>>χ(3)…。在一般情况下,每增加一次极化,χ值减少七八个数量级。由于入射光是变化的,其振幅为E=E0sinωt,所以极化强度也是变化的。根据电磁理论,变化的极化场可作为辐射源产生电磁波——新的光波。在入射光的电场比较小时(比原子内的场强还小),χ(2),χ(3)等极小,P与E成线性关系为P=χ(1)E。新的光波与入射光具有相同的频率,这就是通常的

3、线性光学现象。但当入射光的电场较强时,不仅有线性现象,而且非线性现象也不同程度地表现出来,新的光波中不仅有入射地基波频率,还有二次谐波、三次谐波等频率产生,形成能量转移,频率变换。这就是只有在高强度的激光出现以后,非线性光学才得到迅速发展的原因。2.二阶非线性光学效应虽然许多介质都可产生非线性效应,但具有中心结构的某些晶体和各向同性介质(如气体),由于(3)式中的偶级项为零,只含有奇级项(最低为三级),因此要观测二级非线性效应只能在具有非中心对称的一些晶体中进行,如KDP(或KD*P)、LiNO3晶体等等。现从波的耦合,分析二级非线性效应的产生原理,设有下列两波同时作用于介

4、质:,(4),(5)介质产生的极化强度应为二列光波的叠加,有。(6)经推导得出,二级非线性极化波应包含下面几种不同频率成分:,(7),(8),(9),(10)P直流,(11)从以上看出,二级效应中含有基频波的倍频分量(2ω1)、(2ω2)、和频分量(ω1+ω2)、差频分量(ω1–ω2)和直流分量。故二级效应可用于实现倍频、和频、差频及参量振荡等过程。当只有一种频率为ω的光入射介质时(相当于上式中ω1=ω2=ω),那么二级非线性效应就只有除基频外的一种频率(2ω)的光波产生,称为二倍频或二次谐波。在二级非线性效应中,二倍频又是最基本、应用最广泛的一种技术。第一个非线性效应实验

5、,就是在第一台红宝石激光器问世后不久,利用红宝石0.6943μm激光在石英晶体中观察到紫外倍频激光。后来又有人利用此技术将晶体的1.06μm红外激光转换成0.53μm的绿光,从而满足了水下通信和探测等工作对波段的要求。当ω1≠ω2时,产生ω3=ω1+ω2的光波叫和频。如入射的光波分别为ω和2ω,和频后得到3ω,3ω=ω+2ω(注意,它数值上等于三倍频,但不是三倍频非线性效应过程)。本实验将对和频进行观测。1.非线性极化系数非线性效应系数是决定极化强度大小的一个重要物理量。在线性关系P=χ(1)E中对各向同性介质,χ(1)是只与外电场大小有关而与方向无关的常量;对各向异性介质

6、,χ(1)不仅与电场大小有关,而且与方向有关。在三维空间里,是个二阶张量,有9个矩阵元dij,每个矩阵元称为线性极化系数。在非线性关系P=χ(2)E2中,χ(2)是三阶张量,在三维直角坐标系中有27个分量,鉴于非线性极化系数的对称性,矩阵元减为18个分量,在倍频情况下,(12)P和E的下角标x,y,z表示它们在三个不同方向上的分量。鉴于各种非线性晶体都有特殊的对称性,就像晶体的电光系数矩阵一样,有些dij为零,有些相等,有些相反。因此无对称中心晶体的dij,独立的分量数目仅是有限的几个。例KDP(或KD*P)晶体,有,(13)其中d14=d25,在一定条件下,还可以有d14

7、=d36。又如铌酸锂晶体,有,(14)其中d31=d15。查阅有关资料,可得它们的具体数值。实际工作中,我们总是希望选取dij值大,性能稳定又经济实惠的晶体材料。1.相位匹配及实现方法从前面的讨论知道,极化强度与入射光强和非线性极化系数有关,但是否只要入射光足够强,使用非线性极化系数尽量大的晶体,就一定能获得好的倍频效果呢?不是的。这里还有一个重要因素——相位匹配,它起着举足轻重的作用。实验证明,只有具有特定偏振方向的线偏振光,以某一特定角度入射晶体时,才能获得良好的倍频效果,而以其他角度入射时,则倍频效果很差,甚

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。