Integrative modeling of multi-omics datato identify cancer drivers and inferpatient-specific gene activity多组学数据的集成建模 识别癌症驱动力和推断 患者特异性基因活性

Integrative modeling of multi-omics datato identify cancer drivers and inferpatient-specific gene activity多组学数据的集成建模 识别癌症驱动力和推断 患者特异性基因活性

ID:40849954

大小:2.31 MB

页数:14页

时间:2019-08-08

Integrative modeling of multi-omics datato identify cancer drivers and inferpatient-specific gene activity多组学数据的集成建模 识别癌症驱动力和推断 患者特异性基因活性_第1页
Integrative modeling of multi-omics datato identify cancer drivers and inferpatient-specific gene activity多组学数据的集成建模 识别癌症驱动力和推断 患者特异性基因活性_第2页
Integrative modeling of multi-omics datato identify cancer drivers and inferpatient-specific gene activity多组学数据的集成建模 识别癌症驱动力和推断 患者特异性基因活性_第3页
Integrative modeling of multi-omics datato identify cancer drivers and inferpatient-specific gene activity多组学数据的集成建模 识别癌症驱动力和推断 患者特异性基因活性_第4页
Integrative modeling of multi-omics datato identify cancer drivers and inferpatient-specific gene activity多组学数据的集成建模 识别癌症驱动力和推断 患者特异性基因活性_第5页
资源描述:

《Integrative modeling of multi-omics datato identify cancer drivers and inferpatient-specific gene activity多组学数据的集成建模 识别癌症驱动力和推断 患者特异性基因活性》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Paveletal.BMCSystemsBiology(2016)10:16DOI10.1186/s12918-016-0260-9METHODOLOGYARTICLEOpenAccessIntegrativemodelingofmulti-omicsdatatoidentifycancerdriversandinferpatient-specificgeneactivityAnaB.Pavel1,2*,DmitriySonkin3andAnupamaReddy4AbstractBackground:Highthroughputtechnologieshavebeenusedtoprofile

2、genesinmultipledifferentdimensions,suchasgeneticvariation,copynumber,geneandproteinexpression,epigenetics,metabolomics.Computationalanalysesoftentreatthesedifferentdatatypesasindependent,leadingtoanexplosioninthenumberoffeaturesmakingstudiesunder-poweredandmoreimportantlydonotprovideacomprehensivevi

3、ewofthegene’sstate.Wesoughttoinfergeneactivitybyintegratingdifferentdimensionsusingbiologicalknowledgeofoncogenesandtumorsuppressors.Results:Thispaperproposesanintegrativemodelofoncogeneandtumorsuppressoractivityincellswhichisusedtoidentifycancerdriversandcomputepatient-specificgeneactivityscores.We

4、havedevelopedaFuzzyLogicModeling(FLM)frameworktoincorporatebiologicalknowledgewithmulti-omicsdatasuchassomaticmutation,geneexpressionandcopynumbermeasurements.Theadvantageofusingafuzzylogicapproachistoabstractmeaningfulbiologicalrulesfromlow-levelnumericaldata.Biologicalknowledgeisoftenqualitative,t

5、huscombiningitwithquantitativenumericalmeasurementsmayleveragenewbiologicalinsightsaboutagene’sstate.Weshowthattheoncogenicandalteredtumorsuppressingstateofagenecanbebettercharacterizedbyintegratingdifferentmolecularmeasurementswithbiologicalknowledgethanbyeachdatatypealone.Wevalidatethegeneactivity

6、scoreusingdatafromtheCancerCellLineEncyclopediaanddrugsensitivitydataforfivecompounds:BYL719(PIK3CAinhibitor),PLX4720(BRAFinhibitor),AZD6244(MEKinhibitor),Erlotinib(EGFRinhibitor),andNutlin-3(MDM2inhibitor).Theintegrativescoreimprovespredictionofdrugsensitivityfortheknowndrugtargetsofthesecompoundsc

7、omparedtoeachdatatypealone.Thegeneactivityscoresarealsousedtoclustercolorectalcancercelllines.TwosubtypesofCRCswerefoundandpotentialcancerdriversandtherapeutictargetsforeachofthesubtypeswereidentified

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。