Automatic Localization of Casting Defects withConvolutional Neural Networks 铸件缺陷的自动定位 卷积神经网络

Automatic Localization of Casting Defects withConvolutional Neural Networks 铸件缺陷的自动定位 卷积神经网络

ID:40849685

大小:1.04 MB

页数:10页

时间:2019-08-08

Automatic Localization of Casting Defects withConvolutional Neural Networks 铸件缺陷的自动定位 卷积神经网络_第1页
Automatic Localization of Casting Defects withConvolutional Neural Networks 铸件缺陷的自动定位 卷积神经网络_第2页
Automatic Localization of Casting Defects withConvolutional Neural Networks 铸件缺陷的自动定位 卷积神经网络_第3页
Automatic Localization of Casting Defects withConvolutional Neural Networks 铸件缺陷的自动定位 卷积神经网络_第4页
Automatic Localization of Casting Defects withConvolutional Neural Networks 铸件缺陷的自动定位 卷积神经网络_第5页
资源描述:

《Automatic Localization of Casting Defects withConvolutional Neural Networks 铸件缺陷的自动定位 卷积神经网络》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、AutomaticLocalizationofCastingDefectswithConvolutionalNeuralNetworksMaxFergusonRonayAkYung-TsunTinaLeeKinchoH.LawEngineeringInformaticsGroupSystemsIntegrationDivisionSystemsIntegrationDivisionEngineeringInformaticsGroupCivilandEnvironmentalNationalInsti

2、tuteofStandardsNationalInstituteofStandardsCivilandEnvironmentalEngineeringandTechnology(NIST)andTechnology(NIST)EngineeringStanfordUniversityGaithersburg,UnitedStatesGaithersburg,UnitedStatesStanfordUniversityStanford,UnitedStatesronay.ak@nist.govyung-

3、tsun.lee@nist.govStanford,UnitedStatesmaxferg@stanford.edulaw@stanford.eduAbstract—AutomaticlocalizationofdefectsinmetalcastingsisThereareanumberofnondestructiveexamination(NDE)achallengingtask,owingtotherareoccurrenceandvariationintechniquesavailablefo

4、rproducingtwo-dimensionalandthree-appearanceofdefects.Convolutionalneuralnetworks(CNN)havedimensionalimagesofanobject.Real-timeX-rayimagingrecentlyshownoutstandingperformanceinbothimagetechnologyiswidelyusedindefectdetectionsystemsinclassificationandloc

5、alizationtasks.Weexaminehowseveralindustry,suchason-linewelddefectinspection[3].UltrasonicdifferentCNNarchitecturescanbeusedtolocalizecastingdefectsinspectionandmagneticparticleinspectioncanalsobeusedtoinX-rayimages.Wetakeadvantageoftransferlearningtoal

6、lowmeasurethesizeandpositionofcastingdefectsincaststate-of-the-artCNNlocalizationmodelstobetrainedonacomponents[4,5].Analternativemethodisthree-dimensionalrelativelysmalldataset.Inanalternativeapproach,wetrainaX-raycomputedtomography,thatcanbeusedtovisu

7、alizethedefectclassificationmodelonaseriesofdefectimagesandtheninternalstructureofmaterials.RecentdevelopmentsinhighuseaslidingclassifiermethodtodevelopasimplelocalizationresolutionX-raycomputedtomographyhavemadeitpossibletomodel.Wecomparethelocalizatio

8、naccuracyandcomputationalgainathree-dimensionalcharacterizationofporosity[6,7].performanceofeachtechnique.WeshowpromisingresultsfordefectlocalizationontheGRIMAdatabaseofX-rayimagesThedefectdetectionprocesscanbeframedaseitheran(GD

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。