欢迎来到天天文库
浏览记录
ID:40849685
大小:1.04 MB
页数:10页
时间:2019-08-08
《Automatic Localization of Casting Defects withConvolutional Neural Networks 铸件缺陷的自动定位 卷积神经网络》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、AutomaticLocalizationofCastingDefectswithConvolutionalNeuralNetworksMaxFergusonRonayAkYung-TsunTinaLeeKinchoH.LawEngineeringInformaticsGroupSystemsIntegrationDivisionSystemsIntegrationDivisionEngineeringInformaticsGroupCivilandEnvironmentalNationalInsti
2、tuteofStandardsNationalInstituteofStandardsCivilandEnvironmentalEngineeringandTechnology(NIST)andTechnology(NIST)EngineeringStanfordUniversityGaithersburg,UnitedStatesGaithersburg,UnitedStatesStanfordUniversityStanford,UnitedStatesronay.ak@nist.govyung-
3、tsun.lee@nist.govStanford,UnitedStatesmaxferg@stanford.edulaw@stanford.eduAbstract—AutomaticlocalizationofdefectsinmetalcastingsisThereareanumberofnondestructiveexamination(NDE)achallengingtask,owingtotherareoccurrenceandvariationintechniquesavailablefo
4、rproducingtwo-dimensionalandthree-appearanceofdefects.Convolutionalneuralnetworks(CNN)havedimensionalimagesofanobject.Real-timeX-rayimagingrecentlyshownoutstandingperformanceinbothimagetechnologyiswidelyusedindefectdetectionsystemsinclassificationandloc
5、alizationtasks.Weexaminehowseveralindustry,suchason-linewelddefectinspection[3].UltrasonicdifferentCNNarchitecturescanbeusedtolocalizecastingdefectsinspectionandmagneticparticleinspectioncanalsobeusedtoinX-rayimages.Wetakeadvantageoftransferlearningtoal
6、lowmeasurethesizeandpositionofcastingdefectsincaststate-of-the-artCNNlocalizationmodelstobetrainedonacomponents[4,5].Analternativemethodisthree-dimensionalrelativelysmalldataset.Inanalternativeapproach,wetrainaX-raycomputedtomography,thatcanbeusedtovisu
7、alizethedefectclassificationmodelonaseriesofdefectimagesandtheninternalstructureofmaterials.RecentdevelopmentsinhighuseaslidingclassifiermethodtodevelopasimplelocalizationresolutionX-raycomputedtomographyhavemadeitpossibletomodel.Wecomparethelocalizatio
8、naccuracyandcomputationalgainathree-dimensionalcharacterizationofporosity[6,7].performanceofeachtechnique.WeshowpromisingresultsfordefectlocalizationontheGRIMAdatabaseofX-rayimagesThedefectdetectionprocesscanbeframedaseitheran(GD
此文档下载收益归作者所有