Artificial neural network approach for solving fuzzy differential equations求解模糊微分方程的人工神经网络方法

Artificial neural network approach for solving fuzzy differential equations求解模糊微分方程的人工神经网络方法

ID:40848828

大小:2.39 MB

页数:24页

时间:2019-08-08

Artificial neural network approach for solving fuzzy differential equations求解模糊微分方程的人工神经网络方法_第1页
Artificial neural network approach for solving fuzzy differential equations求解模糊微分方程的人工神经网络方法_第2页
Artificial neural network approach for solving fuzzy differential equations求解模糊微分方程的人工神经网络方法_第3页
Artificial neural network approach for solving fuzzy differential equations求解模糊微分方程的人工神经网络方法_第4页
Artificial neural network approach for solving fuzzy differential equations求解模糊微分方程的人工神经网络方法_第5页
资源描述:

《Artificial neural network approach for solving fuzzy differential equations求解模糊微分方程的人工神经网络方法》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、InformationSciences180(2010)1434–1457ContentslistsavailableatScienceDirectInformationSciencesjournalhomepage:www.elsevier.com/locate/insArtificialneuralnetworkapproachforsolvingfuzzydifferentialequationsa,*bSohrabEffati,MortezaPakdamanaDepartmentofAppliedMathematics,FerdowsiUnive

2、rsityofMashhad,Mashhad,IranbSamaOrganization(affiliatedwithIslamicAzadUniversity)-MashhadBranch,Mashhad,IranarticleinfoabstractArticlehistory:Thecurrentresearchattemptstoofferanovelmethodforsolvingfuzzydifferentialequa-Received23May2007tionswithinitialconditionsbasedontheuseoffee

3、d-forwardneuralnetworks.First,theReceivedinrevisedform19December2009fuzzydifferentialequationisreplacedbyasystemofordinarydifferentialequations.AtrialAccepted21December2009solutionofthissystemiswrittenasasumoftwoparts.Thefirstpartsatisfiestheinitialconditionandcontainsnoadjustable

4、parameters.Thesecondpartinvolvesafeed-forwardneuralnetworkcontainingadjustableparameters(theweights).Hencebyconstruction,theKeywords:initialconditionissatisfiedandthenetworkistrainedtosatisfythedifferentialequations.FuzzydifferentialequationsThismethod,incomparisonwithexistingnum

5、ericalmethods,showsthattheuseofneuralFuzzyCauchyproblemArtificialneuralnetworksnetworksprovidessolutionswithgoodgeneralizationandhighaccuracy.Theproposedmethodisillustratedbyseveralexamples.Ó2009ElsevierInc.Allrightsreserved.1.IntroductionUncertaintyisanattributeofinformation,[28

6、]andtheuseoffuzzydifferentialequations(FDEs)isanaturalwaytomodeldynamicsystemswithembeddeduncertainty.MostpracticalproblemscanbemodeledasFDEs(e.g.[5,8]andSection3.2).ThemethodoffuzzymappingwasinitiallyintroducedbyChangandZadeh[10].Later,DuboisandPrade[11]presentedaformofelementa

7、ryfuzzycalculusbasedontheextensionprinciple[27].PuriandRalescue[23]suggestedtwodefinitionsforthefuzzyderivativeoffuzzyfunctions.ThefirstmethodwasbasedonH-differencenotationandwasfurtherinvestigatedbyKaleva[16].SeveralapproacheswerelaterproposedforFDEsandtheexistenceoftheirsolution

8、s(e.g.[15,19,21,24,26]).TheapproachbasedonH-der

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。