Neural network and fuzzy logic techniques for

Neural network and fuzzy logic techniques for

ID:40694451

大小:282.05 KB

页数:7页

时间:2019-08-06

Neural network and fuzzy logic techniques for_第1页
Neural network and fuzzy logic techniques for_第2页
Neural network and fuzzy logic techniques for_第3页
Neural network and fuzzy logic techniques for_第4页
Neural network and fuzzy logic techniques for_第5页
资源描述:

《Neural network and fuzzy logic techniques for》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、NEURALNETWORK&FUZZYLOGICTECHNIQUESFORTIMESERIESFORECASTINGGeorgiosLezos,andMonteTu11GEORGIOSLEZOSGraduateStudentSchoolofElectrical&ComputerEngineeringUniversityofOklahoma414CarsonEngineeringCenter,202Wesidoyd,Room219NO~I~XI,OK.73019-1023PHONE:(405)325-8620F

2、AX:(405)325-7066E-Mail:pelezos@?otmail.comMONTETULLAssociateProfessorSchoolofElectrical&ComputerEngineeringUniversityofOklahoma414CarsonEngineeringCenter,202WestBoyd,Room219NO~XI,OK.73019-1023PHONE:(405)325-4278FAX:(405)325-7066E-Mail:tull@,ou.edu191NEUMLNE

3、TWORK&FUZZYLOGICTECHNIQUESFORTIMESERIESFORECASTINGABSTRACTPredictionisatypicalexampleofageneralizationproblem.Thegoalofpredictionistoaccuratelyforecasttheshort-termevolutionofthesystembasedonpastinformation.Neuralnetworkandfuzzylogictechniquesareusedbecause

4、theybothhavegoodgeneralizationcapabilities.Theembeddingdimension(numberofinputs)andthetimelagselectionproblemistreatedinthispaper.Itisproposed,thattheselectionoftheappropriateembeddingdimensionandtimelagfortheinput/outputspaceconstructionplaysanimportantrol

5、eintheperformanceoftheabovenetworks.Itisshownthatthe“traditionallyaccepted”choicesfortheembeddingdimensionandtimelagarenotoptimal.Theproposedmethodoffersanimprovementoverthetraditionallyacceptedparameterchoices.Differentanalytxaltechniquesforthedeterminatio

6、noftheseparametersareused,andtheresultsareevaluated.192NEURALNETWORK&FUZZYLOGICTECHNIQUESFORTIMESERIESFORECASTINGI.INTRODUCTIONTimeseriesanalysisincludesthreeimportantspecificproblems:prediction,modeling,andcharacterizations.Onlythepredictionproblemistreate

7、dinthispaper.Atimeseriesisasequenceofobservablequantitiesxl,x2,x3,...,x,takenfromasystematregularintervalsoftime.Therearedifferenttypesoftimeseries:linearhonlinear,stationaryhonstationaryorchaotictimeseries.Wearemoreconcernedwithnonlinear,chaotictimeseriesb

8、ecausetheyaremoredifficulttopredictandareoftenencounteredinreallifeproblems.Thegoalofpredictionistoaccuratelyforecasttheshort-termevolutionofthesystembasedonpastinformation.Ifaneuralnetworkisusedforpre

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。