Word Representation Models for Morphologically Rich Languages in Neural Machine Translation

Word Representation Models for Morphologically Rich Languages in Neural Machine Translation

ID:40844504

大小:659.73 KB

页数:9页

时间:2019-08-08

Word Representation Models for Morphologically Rich Languages in Neural Machine Translation_第1页
Word Representation Models for Morphologically Rich Languages in Neural Machine Translation_第2页
Word Representation Models for Morphologically Rich Languages in Neural Machine Translation_第3页
Word Representation Models for Morphologically Rich Languages in Neural Machine Translation_第4页
Word Representation Models for Morphologically Rich Languages in Neural Machine Translation_第5页
资源描述:

《Word Representation Models for Morphologically Rich Languages in Neural Machine Translation》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、WordRepresentationModelsforMorphologicallyRichLanguagesinNeuralMachineTranslationEkaterinaVylomova,1TrevorCohn,1andXuanliHe1andGholamrezaHaffari21DepartmentofComputingandInformationSystems,UniversityofMelbourne2FacultyofInformationTechnology,MonashUniversityevylo

2、mova@gmail.comtcohn@unimelb.edu.auxuanlih@student.unimelb.edu.augholamreza.haffari@monash.eduAbstractwithaheavytaildistribution.ForexampleinRus-sian,thereareatleast70wordsfordog,encodingDealingwiththecomplexwordformsinmor-case,gender,age,number,sentimentandothers

3、e-phologicallyrichlanguagesisanopenprob-leminlanguageprocessing,andisparticularlymanticconnotations.Manyofthesewordsshareaimportantintranslation.Incontrasttomostcommonlemma,andcontainregularmorphologicalmodernneuralsystemsoftranslation,whichaffixation;consequently

4、muchoftheinformationre-discardtheidentityforrarewords,inthispa-quiredfortranslationispresent,butnotinanacces-perweproposeseveralarchitecturesforlearn-sibleformformodelsofneuralMT.ingwordrepresentationsfromcharacterandInthispaper,weproposeasolutiontothisprob-morph

5、emelevelworddecompositions.Wein-lembyconstructingwordrepresentationscompo-corporatetheserepresentationsinanovelma-chinetranslationmodelwhichjointlylearnssitionallyfromsmallersub-wordunits,whichoc-wordalignmentsandtranslationsviaahardcurmorefrequentlythanthewordst

6、hemselves.Weattentionmechanism.Evaluatingontrans-showthattheserepresentationsareeffectiveinhan-latingfromseveralmorphologicallyrichlan-dlingrarewords,andincreasethegeneralisationca-guagesintoEnglish,weshowconsistentim-pabilitiesofneuralMTbeyondthevocabularyob-pro

7、vementsoverstrongbaselinemethods,ofservedinthetrainingset.Weproposeseveralneu-between1and1.5BLEUpoints.ralarchitecturesforcompositionalwordrepresenta-tions,andsystematicallycomparethesemethodsin-1IntroductiontegratedintoanovelneuralMTmodel.Modelsofend-to-endmachi

8、netranslationbasedonMorespecifically,wemakeuseofcharacterse-neuralnetworkshavebeenshowntoproduceexcel-quencesormorphemesequencesinbuildingwordlenttranslations,r

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。