Solving linear systems through通过求解性系统

Solving linear systems through通过求解性系统

ID:40844208

大小:211.72 KB

页数:18页

时间:2019-08-08

Solving linear systems through通过求解性系统_第1页
Solving linear systems through通过求解性系统_第2页
Solving linear systems through通过求解性系统_第3页
Solving linear systems through通过求解性系统_第4页
Solving linear systems through通过求解性系统_第5页
资源描述:

《Solving linear systems through通过求解性系统》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、SolvinglinearsystemsthroughnesteddissectionNogaAlonRaphaelYusteryAbstractThegeneralizednesteddissectionmethod,developedbyLipton,Rose,andTarjan,isaseminalmethodforsolvingalinearsystemAx=bwhereAisasymmetricpositivede nitematrix.Themethodrunsextremelyfastwhene

2、verAisawell-separablematrix(suchasmatriceswhoseunderlyingsupportisplanaroravoidsa xedminor).Inthisworkweextendthenesteddissectionmethodtoapplytoanynon-singularwell-separablematrixoverany eld.Therunningtimesweobtainessentiallymatchthoseofthenesteddissectionme

3、thod.Keywords.Gaussianelimination,linearsystem,nesteddissection.AMSsubjectclassi cations.68W30,15A15,05C501IntroductionSolvingalinearsystemisthemostbasic,andperhapsthemostimportantproblemincomputationallinearalgebra.Considerablee orthasbeendevotedtoobtaining

4、algorithmsthatsolvealinearsystemfasterthanthenaivecubicimplementationofGaussianelimination.FortherestofthisintroductionweassumethatthesystemisgivenbyAx=b,whereAisanon-singularnnmatrixovera eld,bisann-vectoroverthat eld,andxT=(x1;:::;xn)isthevectorofvariable

5、s.ThefastestgeneralalgorithmforsolvingAx=bwasobtainedbyBunchandHopcroft[2],andbyIbarra,Moran,andHui[10].ThealgebraiccomplexityofbothofthesealgorithmsisO(n!),where!<2:376isthematrixmultiplicationexponent[3].IfAissparseandhasonlymn2non-zeroentries,fasteralgor

6、ithmsexist.AnimportantresultofWiedemann[22]assertsthatifm=O(n)thenasolutionofAx=bcanbecomputedinO~(n2)timeover nite elds.Wenotethatsolvingsparselinearsystemsover nite eldshasimportantapplicationsincryptography(see,e.g.,[8]).Eberlyetal.[4]solveAx=bwhereAisany

7、non-singularmatrixwithO(n)nonzeroboundedintegerentriesinbitcomplexityO~(n2:5).SpielmanandTeng[19]obtainedanalmostlineartime1algorithmforapproximatelysolvingsparsesymmetricdiagonally-dominantlinearsystems.DepartmentofMathematics,TelAvivUniversity,TelAviv6997

8、8,Israel.E{mail:nogaa@post.tau.ac.il.ResearchsupportedinpartbyanERCadvancedgrantandbytheHermannMinkowskiMinervaCenterforGeometryatTelAvivUniversity.yDepartmentofMathematics,UniversityofHaifa,Hai

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。