资源描述:
《solving_systems_of_linear_equations 》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、NumericalAnalysisDamingLiDepartmentofMathematics,ShanghaiJiaoTongUniversity,Shanghai,200240,ChinaEmail:lidaming@sjtu.edu.cnOctober14,2014DamingLiNumericalAnalysisSolvingSystemsofLinearEquationsWewanttosolvealinearsystema11x1+a12x2+···+a1nxn=b1a21x1+a22x2+···+a2nxn
2、=b2...an1x1+an2x2+···+annxn=bnoritsmatrixforma11a12···a1nx1b1a21a22···a2nx2b2..........=........an1an2···annxnbnDamingLiNumericalAnalysisEasy-to-solvesystemDiagona
3、lmatrixa1100···0x1b1x1b1/a110a220···0x2b2x2b2/a2200a33···0x3=b3,x3=b3/a33................
4、...........000···annxnbnxnbn/annLowertriangularmatrix:Forwardsubstitutiona1100···0x1b1a21a220···0x2b2Xi−1a31a32a33···0x3=b3,xi=(bi−aijxj)
5、/aii..............j=1.......an1an20···annxnbnDamingLiNumericalAnalysisEasy-to-solvesystemUppertriangularmatrix:Backwardsubstitutiona11a12a13···a1nx1b10a22a23···a2nx2b2Xn
6、00a33···a3nx3=b3,xi=(bi−aijxj)/aii..............j=i+1.......000···annxnbnLet(p1,p2,···,pn)beapermutationof(1,2,···,n).OnerowofA,sayrowp1,haszerosinpositions2,3···,n.Thenanotherrow,sayrowp2,ha
7、szerosinpositions3,4,···,nandsoon.Theforwardsubstitutionforthispermutedsystembecomes:Xi−1xi←bpi−apijxjapii,i=1,···,nj=1DamingLiNumericalAnalysisLUfactorizationsSupposethatAcanbefactorizedintotheproductofalowertriangularmatrixLanduppertriangularmatrixU:A=LU(itiscalledLU-
8、decomposition),wherel1100···0u11u12u13···u1nl21l220···00u