Revealing Real-Time Emotional

Revealing Real-Time Emotional

ID:40844144

大小:1.15 MB

页数:13页

时间:2019-08-08

Revealing Real-Time Emotional_第1页
Revealing Real-Time Emotional_第2页
Revealing Real-Time Emotional_第3页
Revealing Real-Time Emotional_第4页
Revealing Real-Time Emotional_第5页
资源描述:

《Revealing Real-Time Emotional》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、OPENRevealingReal-TimeEmotionalResponses:aPersonalizedAssessmentSUBJECTAREAS:COMPUTATIONALbasedonHeartbeatDynamicsBIOPHYSICSBIOMEDICALENGINEERING1,2,31,2,4331,2GaetanoValenza,LucaCiti,AntonioLanata´,EnzoPasqualeScilingo&RiccardoBarbieriAPPLIEDMATHEMAT

2、ICSCOMPUTATIONALSCIENCE1NeuroscienceStatisticsResearchLaboratory,MassachusettsGeneralHospital,HarvardMedicalSchool,Boston,MA,02114,2USA,DepartmentofBrainandCognitiveSciences,MassachusettsInstituteofTechnology,Cambridge,MA02139,USA,34ReceivedDepartment

3、ofInformationEngineeringandResearchCentreEPiaggio,UniversityofPisa,Pisa,Italy,SchoolofComputerScience25September2013andElectronicEngineering,UniversityofEssex,Colchester,CO43SQ,UK.Accepted4March2014Emotionrecognitionthroughcomputationalmodelingandanal

4、ysisofphysiologicalsignalshasbeenwidelyinvestigatedinthelastdecade.MostoftheproposedemotionrecognitionsystemsrequirerelativelyPublishedlong-timeseriesofmultivariaterecordsanddonotprovideaccuratereal-timecharacterizationsusing21May2014short-timeseries.

5、Toovercometheselimitations,weproposeanovelpersonalizedprobabilisticframeworkabletocharacterizetheemotionalstateofasubjectthroughtheanalysisofheartbeatdynamicsexclusively.Thestudyincludesthirtysubjectspresentedwithasetofstandardizedimagesgatheredfromth

6、einternationalaffectivepicturesystem,alternatinglevelsofarousalandvalence.DuetotheintrinsicCorrespondenceandnonlinearityandnonstationarityoftheRRintervalseries,aspecificpoint-processmodelwasdevisedforrequestsformaterialsinstantaneousidentificationcons

7、ideringautoregressivenonlinearitiesuptothethird-orderaccordingtoshouldbeaddressedtotheWiener-Volterrarepresentation,thustrackingveryfaststimulus-responsechanges.FeaturesfromtheG.V.(g.valenza@ieee.instantaneousspectrumandbispectrum,aswellasthedominantL

8、yapunovexponent,wereextractedandorg)consideredasinputfeaturestoasupportvectormachineforclassification.Results,estimatingemotionseach10seconds,achieveanoverallaccuracyinrecognizingfouremotionalstatesbasedonthecircumplexmodelofaffectof79.29%,wit

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。