资源描述:
《From Random Matrix Theory to Coding Theory_ Volume of a Metric Ball in Unitary Group》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1FromRandomMatrixTheorytoCodingTheory:VolumeofaMetricBallinUnitaryGroupLuWei,Renaud-AlexandrePitaval,JukkaCorander,andOlavTirkkonenAbstractVolumeestimatesofmetricballsinmanifoldsfinddiverseapplicationsininformationandcodingtheory.Inthispaper,somenewresultsforthevolumeofametricballinunitarygroupared
2、erivedviavarioustoolsfromrandommatrixtheory.Thefirstresultisanintegralrepresentationoftheexactvolume,whichinvolvesaToeplitzdeterminantofBesselfunctions.Theconnectiontomatrix-variatehypergeometricfunctionsandSzego’sstronglimittheoremleadindependentlyfromthefinitesizeformula˝toanasymptoticone.Theconve
3、rgenceofthelimitingformulaisexceptionallyfastduetoanunderlyingmock-Gaussianbehavior.Theproposedvolumeestimateenablessimplebutaccurateanalyticalevaluationofcoding-theoreticboundsofunitarycodes.Inparticular,theGilbert-VarshamovlowerboundandtheHammingupperboundoncardinalityaswellastheresultingboundso
4、ncoderateandminimumdistancearederived.Moreover,boundsonthescalinglawofcoderatearefound.Lastly,aclosed-formboundondiversitysumrelevanttounitaryspace-timecodesisobtained,whichwasonlycomputednumericallyinliterature.arXiv:1506.07259v1[cs.IT]24Jun2015IndexTermsCoding-theoreticbounds,randommatrixtheory,
5、unitarygroup,volumeofmetricballs.L.WeiandJ.CoranderarewiththeDepartmentofMathematicsandStatistics,UniversityofHelsinki,Finland(e-mails:{lu.wei,jukka.corander}@helsinki.fi).R.-A.PitavaliswiththeDepartmentofMathematicsandSystemsAnalysis,AaltoUniversity,Finland(e-mail:renaud-alexandre.pitaval@aalto.fi)
6、.O.TirkkoneniswiththeDepartmentofCommunicationsandNetworking,AaltoUniversity,Finland(e-mail:olav.tirkkonen@aalto.fi).Thisworkwaspresentedinpartat2015IEEEInternationalSymposiumonInformationTheory.June25,2015DRAFT2I.INTRODUCTIONDeterminingthevolumeofmetricballsinRiemannianmanifold,inparticularunitary
7、group,isthekeytounderstandseveralcodingandinformationtheoreticalquantities.Performanceanalysisofunitaryspace-timecodes[1–3]requirestheknowledgeofvolumeintheunitarygroup[4,5].Forchannelquantizationsinprecodedmulti