欢迎来到天天文库
浏览记录
ID:40811325
大小:208.04 KB
页数:4页
时间:2019-08-08
《函数之多种解法训练》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、函数1.设函数.(1)在区间上画出函数的图像;(2)设集合.试判断集合和之间的关系,并给出证明;(3)当时,求证:在区间上,的图像位于函数图像的上方.3.已知定义域为的函数是奇函数。(Ⅰ)求的值;(Ⅱ)若对任意的,不等式恒成立,求的取值范围(一)创新试题1.下图为某三岔路口交通环岛的简化模型,在某高峰时段,单位时间进出路口的机动车辆数如图所示,图中分别表示该时段单位时间通过路段、、的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则(A)(B)(C)(D)2.设函数f(x)=3sinx+2
2、cosx+1。若实数a、b、c使得af(x)+bf(x−c)=1对任意实数x恒成立,则的值等于()A.B.C.−1D.1答案:1解:(1)(2)方程的解分别是和,由于在和上单调递减,在和上单调递增,因此.由于.(3)[解法一]当时,.,.又,①当,即时,取,.,则.②当,即时,取,=.由①、②可知,当时,,.因此,在区间上,的图像位于函数图像的上方.[解法二]当时,.由得,令,解得或,在区间上,当时,的图像与函数的图像只交于一点;当时,的图像与函数的图像没有交点.如图可知,由于直线过点,当时,直线是由直线绕点逆时针方向旋
3、转得到.因此,在区间上,的图像位于函数图像的上方.3解:(Ⅰ)因为是奇函数,所以=0,即又由f(1)=-f(-1)知(Ⅱ)解法一:由(Ⅰ)知,易知在上为减函数。又因是奇函数,从而不等式:等价于,因为减函数,由上式推得:.即对一切有:,从而判别式解法二:由(Ⅰ)知.又由题设条件得: , 即 :,整理得 上式对一切均成立,从而判别式四、创新试题1解:依题意,有x1=50+x3-55=x3-5,x14、2故选C2解:令c=π,则对任意的x∈R,都有f(x)+f(x−c)=2,于是取,c=π,则对任意的x∈R,af(x)+bf(x−c)=1,由此得。选C。
4、2故选C2解:令c=π,则对任意的x∈R,都有f(x)+f(x−c)=2,于是取,c=π,则对任意的x∈R,af(x)+bf(x−c)=1,由此得。选C。
此文档下载收益归作者所有